Sun

microsystems

OpenBoot 3.x Command Reference
Manual

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto,CA 94303-4900
U.S.A. 650-960-1300

Part No. 806-1377-10
February 2000, Revision A

Send comments about this document to: docf eedback@un. com

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
(c) Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook?2, docs.sun.com, OpenBoot, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR
52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelgue moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable a
Netscape Communicator™: (c) Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, OpenBoot, et Solaris sont des marques de fabrique ou des marques déposées,
ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour larecherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTEPUBLICATION EST FOURNIE"EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION AREPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

@9 prease 9

Adobe PostScript

Contents

Overview 1
Features of OpenBoot 1
Plug-in Device Drivers 1
FCode Interpreter 2
Device Tree 2
Programmable User Interface 2
The User Interface 2
The Device Tree 3
Device Path Names, Addresses, and Arguments 3
Device Aliases 5
Displaying the Device Tree 6
Getting Help 9
A Caution About Using Some OpenBoot Commands 10

Booting and Testing Your System 13
Booting Your System 13
Booting for the Casual User 14
Booting for the Expert User 15
Running Diagnostics 18

Testing the SCSI Bus 19

iv

Testing Installed Devices 19

Testing the Diskette Drive 20

Testing Memory 20

Testing the Clock 21

Testing the Network Controller 21

Monitoring the Network 22
Displaying System Information 22

Resetting the System 23

Setting Configuration Variables 25
Displaying and Changing Variable Settings 27
Setting Security Variables 29
Command Security 30
Full Security 31
Changing the Power-on Banner 32
Input and Output Control 33
Selecting Input and Output Device Options
Serial Port Characteristics 34
Selecting Boot Options 35
Controlling Power-on Self-Test (POST) 35
Using nvramrc 36
Editing the Contents of the Script 38

Activating the Script 39

Using Forth Tools 41
Forth Commands 41
Data Types 43

Using Numbers 43
The Stack 44

OpenBoot 3.x Command Reference Manual « February 2000

34

Displaying Stack Contents 45
The Stack Diagram 46
Manipulating the Stack 48
Creating Custom Definitions 50
Using Arithmetic Functions 52
Single-Precision Integer Arithmetic 52
Double Number Arithmetic 53
Data Type Conversion 54
Address Arithmetic 55
Accessing Memory 56
Virtual Memory 56
Device Registers 60
Using Defining Words 61
Searching the Dictionary 63
Compiling Data Into the Dictionary 66
Displaying Numbers 67
Changing the Number Base 68
Controlling Text Input and Output 68
Redirecting Input and Output 72
Command Line Editor 74
Conditional Flags 76
Control Commands 77
Thei f - el se-t hen Structure 77
The case Statement 78
The begi nLoop 79
The do Loop 81

Additional Control Commands 83

5. Loading and Executing Programs 85
Using boot 86
Using dl to Load Forth Text Files Over Serial Port A 87
Using | oad 88
Using dl bi n to Load FCode or Binary Executables Over Serial Port A 89
Using dl oad to Load From Ethernet 90
Forth Programs 91
FCode Programs 91
Binary Executables 91

Using ?go 92

6. Debugging 93
Using the Forth Language Decompiler 93
Using the Disassembler 95
Displaying Registers 95
SPARC Registers 96
Breakpoints 97
The Forth Source-Level Debugger 99
Using pat ch and (pat ch) 100
Usingftrace 103

A. Setting Up a TIP Connection 105
Common Problems With TIP 107

B. Building a Bootable Floppy Disk 109

C. Troubleshooting Guide 111

Power-on Initialization Sequence 111
Emergency Procedures 112

Preserving Data After a System Crash 113

vi OpenBoot 3.x Command Reference Manual ¢ February 2000

Common Failures 113
Blank Screen —No Output 114
System Boots From the Wrong Device 114
System Will Not Boot From Ethernet 115
System Will Not Boot From Disk 116
SCSI Problems 116

Setting the Console to a Specific Monitor 117

Sun Ultra 5/10 UPA/PCI System 119
PCIl-Based System 119

pci a and pci b PCI Busses 122

Sun Ultra 30 UPA/PCI System 123
PCIl-Based System 123

Generic Names 126

pci a and pci b PCI Busses 127

Sun Ultra 60 UPA/PCI System 129
PCIl-Based System 129

Generic Names 132

pci a and pci b PCI Busses 133

Sun Ultra 250 UPA/PCI System 135
Banner Command Output 135

Generic Names 135

SCSI Internal Busses 137

. properties foraPCIl Device 139
. speed Command 140

Probing of Slots For PCI Busses 140
Probe SCSI Command 141

Vii

H. Sun Ultra 450 UPA/PCI System 143
Banner Command Output 143

Generic Names 143

SCSI Internal Busses 145

. properties foraPCIl Device 147
. speed Command 148

Probing of Slots For PCI Busses 148
Probe SCSI Command 150

I. Forth Word Reference 151
Stack Item Notation 152

Commands for Browsing the Device Tree 154
Common Options for the boot Command 154
System Information Display Commands 155
Viewing or Changing Configuration Variables 156
NVRAMRC Editor Commands 156

NVRAM Script Editor Keystroke Commands 158
Stack Manipulation Commands 160
Single-Precision Arithmetic Functions 161
Bit-wise Logical Operators 162

Double Number Arithmetic Functions 162

32-Bit Data Type Conversion Functions 163
64-Bit Data Type Conversion Functions 163
Address Arithmetic Functions 165

64-Bit Address Arithmetic Functions 166
Memory Access Commands 166

64-Bit Memory Access Functions 169

Memory Mapping Commands 169

viii OpenBoot 3.x Command Reference Manual February 2000

Defining Words 170

Dictionary Searching Commands 171
Dictionary Compilation Commands 171
Assembly Language Programming 173

Basic Number Display 173

Changing the Number Base 174

Numeric Output Word Primitives 174
Controlling Text Input 175

Displaying Text Output 175

Formatted Output 177

Manipulating Text Strings 177

170 Redirection Commands 178

ASCII Constants 178

Command Line Editor Keystroke Commands 178
Command Completion Keystroke Commands 180
Comparison Commands 180

i f-else-then Commands 182

case Statement Commands 182

begi n (Conditional) Loop Commands 182
do (Counted) Loop Commands 184

Program Execution Control Commands 184
File Loading Commands 185

Disassembler Commands 185

Breakpoint Commands 186

Forth Source-level Debugger Commands 187
Time Utilities 188

Miscellaneous Operations 188

Multiprocessor Commands 189

Memory Mapping Commands 189

Memory Mapping Primitives 189

Cache Manipulation Commands 191

Reading/Writing Machine Registers in Sun-4u Machines 191
Alternate Address Space Access Commands 191

SPARC Register Commands 192

SPARC V9 Register Commands 194

Emergency Keyboard Commands 194

X OpenBoot 3.x Command Reference Manual ¢ February 2000

Preface

OpenBoot 3.x Command Reference describes how to use Sun™ systems that implement
firmware that responds as those described by IEEE Standard 1275-1994., Standard For
Boot Firmware.

This manual contains information on using the OpenBoot firmware to perform tasks
such as:

= Booting the operating system

= Running diagnostics

= Modifying system start-up configuration parameters

= Loading and executing programs

= Troubleshooting

This manual also describes the commands of the OpenBoot Forth Interpreter which
you can use to write Forth programs or if you want or use the more advanced
features of this firmware (such as its debugging capabilities).

Who Should Use This Book

This manual is written for all users, including systems designers, systems
administrators, and end users, who want to use the OpenBoot to configure and
debug their SBus and PCl-based systems.

Xi

Assumptions

The information in this manual is for a system that uses Version 3.x OpenBoot. Other
OpenBoot implementations may use different prompts or formatting, and may not
support all of the tools and capabilities described in this manual.

Xii

How This Book Is Organized

Chapter 1 describes the user interface and other main features of OpenBoot.
Chapter 2 explains the most common tasks for which OpenBoot is used.

Chapter 3 details how to perform system administration tasks with NVRAM
parameters.

Chapter 4 describes both basic and advanced functions of the OpenBoot Forth
language.

Chapter 5 describes how to load and execute programs from various sources (such
as Ethernet, disk, or serial port).

Chapter 6 describes the debugging capabilities of the OpenBoot, including
decompiler, Forth source-level debugger, and breakpoints.

Appendix A “Setting Up a TIP Connection” describes how to create a bootable
floppy diskette from which you can load programs or files.

Appendix B “Building a Bootable Floppy Disk™ describes how to create a bootable
floppy diskette from which you can load programs or files.

Appendix C “Troubleshooting Guide” discusses solutions for typical situations
when you cannot boot the operating system.

Appendix D “Sun Ultra 5/10 UPA/PCI System” contains some PCl-related
information for Sun Ultra 5/10 systems.

Appendix E “Sun Ultra 30 UPA/PCI System” contains some PCl-related information
for Sun Ultra 30 systems.

Appendix F “Sun Ultra 60 UPA/PCI System” contains some PCl-related information
for Sun Ultra 60 systems.

OpenBoot 3.x Command Reference Manual * February 2000

Appendix G “Sun Ultra 250 UPA/PCI System” contains some PCl-related
information for Sun Ultra 250 systems.

Appendix H “Sun Ultra 450 UPA/PCI System” contains some PCl-related
information for Sun Ultra 450 systems.

Appendix | “Forth Word Reference” contains all currently-supported OpenBoot
Forth commands.

Related Documentation

A companion document to this manual is:
= OpenBoot 3.x Quick Reference Guide

For information on OpenBoot FCode, refer to:
= Writing FCode 2.x Programs
= Writing FCode 3.x Programs

For information about Open Firmware, refer to the following manual:

IEEE Standard 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core
Requirements and Practices (IEEE Order Number SH17327. 1-800-678-4333.) Also see
http://playground. sun. conf 1275.

For more information about Forth and Forth programming, refer to:

= ANSI X3.215-1994, American National Standard for Information Systems-Programming
Languages-FORTH.

= Starting FORTH, Leo Brody. FORTH, Inc., second edition, 1987.
= Forth: The New Model, Jack Woehr. M & T Books, 1992.
= Forth Interest Group (1-510-89-FORTH)

http://forth.org/fig. htm

Xiii

Xiv

What Typographic Changes and
Symbols Mean

The following table describes the typeface changes and symbols used in this book.

TABLEP-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, Edit your . | ogi n file.
and directories; on-screen Use | s -ato list all files.
computer output machi ne_nanme% You have nail .

AaBbCc123 What you type, contrasted with |rachi ne_nanme% suPasswor d:
on-screen computer output

AaBbCc123 Command-line placeholder: To delete a file, type r mfilename.
replace with a real name or
value

AaBbCcl123 Book titles, new words or Read Chapter 6 in User’s Guide. These
terms, or words to be are called class options.
emphasized You must be root to do this.

Code samples are included in boxes and may display the following:

ok OpenBoot command prompt ok

% UNIX C shell prompt syst ento

$ UNIX Bourne and Korn shell syst ent
prompt

Superuser prompt, all shells syst em#

This manual follows a number of typographic conventions:
= Keys are indicated by their name. For example:

Press the Return key.

= When you see two key names separated by a dash, press and hold the first key
down, then press the second key. For example:

To enter Control-C, press and hold Control, then press C, then release both keys.

= When you see two key names separated by a space, press and release the first key
and then press and release the second key. For example:

OpenBoot 3.x Command Reference Manual * February 2000

To enter Escape B, press and release Escape, then press and release B.

= Inacommand line, square brackets indicate an optional entry and italics indicate
an argument that you must replace with the appropriate text. For example:

hel p [word]

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. You can email or fax your comments to us. Please include the part
number of your document in the subject line of your email or fax message.

= Email:smcc-docs@sun.com

= Fax: SMCC Document Feedback
1-415-786-6443

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatrain.com at:

http://wwwl.fatbrain.com/documentation/sun

Accessing Sun Documentation Online

The docs. sun. comweb site enables you to access Sun technical documentation on
the Web. You can browse the docs. sun. comarchive or search for a specific book
title or subject at:

http://docs. sun. com

XV

xvi OpenBoot 3.x Command Reference Manual * February 2000

CHAPTER 1

Overview

This chapter introduces OpenBoot as defined by IEEE Standard 1275-1994., Standard
for Boot Firmware. OpenBoot firmware is executed immediately after you turn on
your system. The primary tasks of OpenBoot firmware are to:

= Test and initialize the system hardware

= Determine the hardware configuration

= Boot the operating system from either a mass storage device or from a network
= Provide interactive debugging facilities for testing hardware and software

Features of OpenBoot

The OpenBoot architecture provides a significant increase in functionality and
portability when compared to proprietary systems of the past. Although this
architecture was first implemented by Sun Microsystems as OpenBoot on SPARC
systems, its design is processor-independent. The following paragraphs describe
some notable features of OpenBoot firmware.

Plug-in Device Drivers

A plug-in device driver is usually loaded from a plug-in device such as an SBus
card. The plug-in device driver can be used to boot the operating system from that
device or to display text on the device before the operating system has activated its
own drivers. This feature enables the input and output devices supported by a
particular system to evolve without changing the system PROM.

FCode Interpreter

Plug-in drivers are written in a machine-independent interpreted language called
FCode. Each OpenBoot system PROM contains an FCode interpreter. Thus, the same
device and driver can be used on machines with different CPU instruction sets.

Device Tree

The device tree is a data structure describing the devices (permanently installed and
plug-in) attached to a system. Both the user and the operating system can determine
the hardware configuration of the system by inspecting the device tree.

Programmable User Interface

The OpenBoot User Interface is based on the interactive programming language Forth.
Sequences of user commands can be combined to form complete programs, and this
provides a powerful capability for debugging hardware and software.

2

The User Interface

The user interface is based on an interactive command interpreter that gives you
access to an extensive set of functions for hardware and software development, fault
isolation, and debugging. Any level of users can use these functions.

The user interface prompt is implementation dependent.

You can enter the OpenBoot environment in the following ways:
= By halting the operating system

= By pressing the Stop-A key

= By power-cycling the system

If your system is not configured to boot automatically, the system will stop at the
user interface.

If automatic booting is configured, you can make the system stop at the user
interface by pressing the Stop-A keys from the keyboard after the display console
banner is displayedbut before the system starts booting the operating system.

= When the system hardware detects an error from which it cannot recover (This is
known as a Watchdog Reset.)

OpenBoot 3.x Command Reference Manual < February 2000

See “A Caution About Using Some OpenBoot Commands” on page 10 for
information on using commands after entering OpenBoot from the operating system.

The Device Tree

Devices are attached to a host computer through a hierarchy of interconnected
buses. OpenBoot represents the interconnected buses and their attached devices as a
tree of nodes. Such a tree is called the device tree. A node representing the host
computer’s main physical address bus forms the tree’s root node.

Each device node can have:

= Properties, which are data structures describing the node and its associated
device

= Methods, which are the software procedures used to access the device
= Data, which are the initial values of the private data used by the methods

= Children, which are other device nodes “attached” to a given node and that lie
directly below it in the device tree

= A parent, which is the node that lies directly above a given node in the device
tree.

Nodes with children usually represent buses and their associated controllers, if any.
Each such node defines a physical address space that distinguishes the devices
connected to the node from one another. Each child of that node is assigned a
physical address in the parent’s address space.

The physical address generally represents a physical characteristic unique to the
device (such as the bus address or the slot number where the device is installed).
The use of physical addresses to identify devices prevents device addresses from
changing when other devices are installed or removed.

Nodes without children are called leaf nodes and generally represent devices.
However, some such nodes represent system-supplied firmware services.

Device Path Names, Addresses, and Arguments

OpenBoot deals directly with hardware devices in the system. Each device has a
unique name representing the type of device and where that device is located in the
system addressing structure. The following example shows a full device path name:

/ sbus@lf, 0/ SUNW f as @, 8800000/ sd@3, 0: a

Chapter 3

A full device path name is a series of node names separated by slashes (/). The root
of the tree is the machine node, which is not named explicitly but is indicated by a
leading slash (/). Each node name has the form:

driver-name@unit-address: device-arguments

TABLE 1-1 describes each of these parameters.

TABLE 1-1 Device Path Name Parameters

Path Name Parameter Description

driver-name

@

unit-address

device-arguments

A human-readable string consisting of one to 31 letters, digits and punctuation
characters from the set “, . _ + - ” that, ideally, has some mnemonic value. Uppercase
and lowercase characters are distinct. In some cases, this name includes the name of the
device’s manufacturer and the device’s model name, separated by a comma. Typically,
the manufacturer’s upper-case, publicly-listed stock symbol is used as the
manufacturer’s name (e.g. SUNW sd). For built-in devices, the manufacturer’s name is
usually omitted (e.g. sbus).

Must precede the address parameter.

A text string representing the physical address of the device in its parent’s address space.
The format of the text is bus dependent.

Must precede the arguments parameter.

A text string, whose format depends on the particular device. It can be used to pass
additional information to the device’s software.

The full device path name mimics the hardware addressing used by the system to
distinguish between different devices. Thus, you can specify a particular device
without ambiguity.

In general, the unit-address part of a node name represents an address in the physical
address space of its parent. The exact meaning of a particular address depends on
the bus to which the device is attached. Consider this example:

/ sbus@f, 0/ esp@, 40000/ sd@3, 0: a

= 1f, O represents an address on the main system bus, because the SBus is directly
attached to the main system bus in this example.

= 0, 40000 is an SBus slot number (in other words, 0) and an offset (in other
words, 40000), because the esp device is at offset 40000 on the card in SBus slot
0.

= 3, 0 is a SCSI target and logical unit number, because the disk device is attached
to a SCSI bus at target 3, logical unit 0.

4 OpenBoot 3.x Command Reference Manual ¢ February 2000

When specifying a path name, either the @nit-address or driver-name part of a node
name is optional, in which case the firmware tries to pick the device that best
matches the given name. If there are several matching nodes, the firmware chooses
one (but it may not be the one you want).

For example, using / sbus/ esp@, 40000/ sd@3, 0 assumes that the system in
guestion has exactly one SBus on the main system bus, making sbus as
unambiguous an address as sbus@.f, 0. On the same system, however, / sbus/
esp/ sd@, 0 might or might not be ambiguous. Since SBus accepts plug-in cards,
there could be more than one esp device on the same SBus bus. If there were more
than one on the system, using esp alone would not specify which one, and the
firmware might not choose the one you intended.

As another example, / sbus/ @, 1/ sd@, 0 would normally be unambiguous, while
/ sbus/ scsi @, 1/ @, 0 usually would not, since both a SCSI disk device driver
and a SCSI tape device driver can use the SCSI target, logical unit address 3, 0.

The : device-arguments part of the node name is also optional. Once again, in the
example:

/ sbus@lf, 0/ scsi @, 1/ sd@, 0: a

the argument for the disk device is a. The software driver for this device interprets
its argument as a disk partition, so the device path name refers to partition a on that
disk.

Some implementations also enable you to omit path name components. So long as
the omission does not create any ambiguity, those implementations will select the
device that you intended. For example, if our example system had only one sd
device,/ sd: a would identify the same device as the much longer preceding
expression.

Device Aliases

A device alias, or simply, alias, is a shorthand representation of a device path.

For example, the alias di sk may represent the complete device path name:

/ sbus@f, 0/ esp@, 40000/ sd@, 0: a

Systems usually have predefined device aliases for the most commonly used
devices, so you rarely need to type a full device path name.

Chapter 5

TABLE 1-2 describes the deval i as command, which is used to examine, create, and
change aliases.

TABLE1-2 Examining and Creating Device Aliases

Command

Description

deval i as

deval i as alias

Display all current device aliases.

Display the device path name corresponding to alias.

deval i as aliasdevice-path Define an alias representing device-path.

If an alias with the same name already exists, the new value supersedes the
old.

User-defined aliases are lost after a system reset or power cycle. If you want to create
permanent aliases, you can either manually store the deval i as command in a
portion of non-volatile RAM (NVRAM) called nvramrc, or use the nval i as and
nvunal i as commands. (See Chapter 3 “Setting Configuration Variables”, for more
details.)

Displaying the Device Tree

You can browse the device tree to examine and modify individual device tree nodes.
The device tree browsing commands are similar to the SolarisTM ™commands for
changing, displaying and listing the current directory in the Solaris directory tree.
Selecting a device node makes it the current node.

The User Interface commands for browsing the device tree are shown in TABLE 1-3.

TABLE 1-3 Commands for Browsing the Device Tree

Command

Description

. properties
dev device-path

dev node-name

dev
dev /

devi ce-end

device-path”
devi ce

Display the names and values of the current node’s properties.
Choose the indicated device node, making it the current node.

Search for a node with the given name in the subtree below the current
node, and choose the first such node found.

Choose the device node that is the parent of the current node.
Choose the root machine node.

Leave the device tree.

find- Choose device node, similar to dev.

6 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 1-3 Commands for Browsing the Device Tree (Continued)

Command Description

I's Display the names of the current node’s children.

pwd Display the device path name that names the current node.

see wordname Decompile the specified word.

show devs [device-path] Display all the devices directly beneath the specified device in the device

tree. show devs used by itself shows the entire device tree.
wor ds Display the names of the current node’s methods.

" device-path" sel ect - dev Select the specified device and make it the active node.

. properties displays the names and values of all the properties in the current

node:

ok dev /zs@, f 0000000

ok .properties

addr ess ff ee9000
port-b-ignore-cd
port-a-ignore-cd

keyboard

devi ce_type seri al

sl ave 00000001

intr 0000000c 00000000
interrupts 0000000c

reg 00000001 0000000 00000008
nane zs

ok

dev sets the current node to the named node so its contents can be viewed. For
example, to make the ACME company’s SBus device named “ACME,widget” the

current node:

ok dev /sbus/ ACME, w dget

find-devi ce is essentially identical to dev differing only in the way the input

pathname is passed.

ok " /sbus/ACME, wi dget" find-device

Chapter

7

Note — After choosing a device node with dev or fi nd- devi ce, you can’t execute
that node’s methods because dev does not establish the current instance. For a
detailed explanation of this issue, refer toWriting FCode 3.x Programs.

show- devs lists all the devices in the OpenBoot device tree, as shown in the
following example:

ok show- devs

/ SUNW Ul t r aSPARC@, 0

/ sbus@lf, 0

/counter-tinmer@.f, 3c00

/virtual - nenory

[menmory@, 0

/aliases

[options

/ openprom

/ chosen

/ packages

/ sbus@f, 0/ cgsi x@, 0

/ sbus@lf, 0/ | ebuf fer @, 40000

/ sbus@lf, 0/ dnra@, 81000

/ sbus@.f, 0/ SUNW bpp@, c800000

/ sbus@lf, 0O/ SUNW hne@, 8c00000

/ sbus@.f, 0/ SUNW f as @, 8800000

/ sbus@lf, 0/ sc@, 1300000

/ sbus@lf, 0/ zs@, 1000000

/ sbus@Lf, 0/ zs@, 1100000

/ sbus@lf, 0/ eeprom@, 1200000

/ sbus@.f, 0/ SUNW f dt wo@ , 1400000
[sbus@f, 0/ fl ashprom@, O

/ sbus@lf, 0/ auxi o@, 1900000

/ sbus@.f, 0/ SUNW CS4231@l, c000000
/ sbus@Lf, 0/ SUNW f as @, 8800000/ st
/ sbus@Lf, 0/ SUNW f as @, 8800000/ sd
/ openproniclient-services

/ packages/ di sk- | abel

/ packages/ obp-tftp

/ packages/ debl ocker

/ packages/t er mi nal - errul at or

ok

8 OpenBoot 3.x Command Reference Manual ¢ February 2000

Here is an example of the use of wor ds:

ok dev /zs

ok words

ring-bell read remove-abort? install-abort

cl ose open abort ? restore

cl ear reset i ni tkbdnouse keyboard-addr nouse
1200baud set baud i nitport port -addr

Getting Help

Wheneveryou see the ok prompt on the display, you can ask the system for help by
typing one of the help commands shown in TABLE 1-4.

TABLE 1-4 Help Commands

Command

Description

hel p
hel p category

hel p command

List main help categories.

Show help for all commands in the category. Use only the first word of the category
description.

Show help for individual command (where available).

hel p, without any specifier, displays instructions on how to use the help system and
lists the available help categories. Because of the large number of commands, help is
available only for commands that are used frequently.

If you want to see the help messages for all the commands in a selected category, or,
possibly, a list of subcategories, type:

ok hel p category

If you want help for a specific command, type:

ok hel p comrand

Chapter 9

For example, when you ask for information on the dunp command, you might see
the following message:

ok hel p dunp

Cat egory: Menory access

dunp (addr length --) display nmenory at addr for |length bytes
ok

The above help message first shows that dunp is a command from the Menory
access category. The message also shows the format of the command.

Note — In some newer systems, descriptions of additional machine-specific
commands are available with the hel p command. Help as described may not be
available on all systems.

10

A Caution About Using Some OpenBoot
Commands

OpenBoot may not operate correctly after the operating system has begun execution.
(For example, after Stop-a or halt.) This occurs when the operating system can
modify the system state in ways that are inconsistent with continued OpenBoot
operation. In this case, you may have to power cycle the system to restore normal
operation.

For example, suppose you boot the operating system, exit to OpenBoot, then execute
the pr obe- scsi command (described in “Booting and Testing Your System”). You
may find that pr obe- scsi fails, and you may not be able to resume the operating
system, or you may have to power cycle the systems.

Re-execute an OpenBoot command that failed because the operating system has
executed:

1. Note the value of auto-boot? NVRAM configuration variable using printenv. If it is

true, set the value to false using SETENV.

2. Reset the system.
3. Execute OpenBoot command after it stops at the user interface.

4. Restore the value of auto-boot? NVRAM configuration.

OpenBoot 3.x Command Reference Manual ¢ February 2000

5. Reset the system.

Chapter 11

12 OpenBoot 3.x Command Reference Manual ¢ February 2000

CHAPTER 2

Booting and Testing Your System

This chapter describes the most common tasks that you perform using OpenBoot.
These tasks enable you to:

= Boot your system

= Run diagnostics

= Display system information

= Reset the system

Booting Your System

The most important function of OpenBoot firmware is to boot the system. Booting is
the process of loading and executing a stand-alone program such as an operating
system. Booting can either be initiated automatically or by typing a command at the
User Interface.

The boot process is controlled by a number of configuration variables. (Configuration
variables are discussed in detail in Chapter 3 “Setting Configuration Variables) The
configuration variables that affect the boot process are:

= aut o- boot ?

This variable controls whether or not the system automatically boots after a system
reset or when the power is turned on. This variable is typically t r ue.

= boot - conmand

This variable specifies the command to be executed when aut o- boot ? ist rue. The
default value of boot - command is boot with no command line arguments.

= diag-switch?

If the value is true, run in the Diagnostic mode. This variable is f al se by default.
= boot-device

13

14

This variable contains the name of the default boot device that is used when
OpenBoot is not in diagnostic mode.

=« boot-file

This variable contains the default boot arguments that are used when OpenBoot is
not in diagnostic mode.

= di ag-devi ce

This variable contains the name of the default diagnostic mode boot device.
« diag-file

This variable contains the default diagnostic mode boot arguments.

Based on the values of the above configuration variables, the boot process can
proceed in a number of different ways. For instance:

= If aut o- boot ? ist r ue, the machine will boot from either the default boot device
or from the diagnostic boot device depending on whether OpenBoot is in
diagnostic mode.

= If aut 0- boot ? is f al se, the machine will stop at the OpenBoot User Interface
without booting the system. To boot the system, you can do one of the following:

« Type the boot command without any arguments. The machine will boot from
the default boot device using the default boot arguments.

« Type the boot command with an explicit boot device. The machine will boot
from the specified boot device using the default boot arguments.

« Type the boot command with explicit boot arguments. The machine will use
the specified arguments to boot from the default boot device.

« Type the boot command with an explicit boot device and with explicit
arguments. The machine will boot from the specified device with the specified
arguments.

Booting for the Casual User

Typically, aut o- boot ? will be t rue, boot - command will be boot , and OpenBoot
will not be in diagnostic mode. Consequently, the system will automatically load
and execute the program and arguments described by boot - fi | e from the device
described by boot - devi ce when the system is first turned on or following a system
reset.

If you want to boot the default program when aut o- boot ? is f al se, simply type
boot at the ok prompt.

OpenBoot 3.x Command Reference Manual ¢ February 2000

Booting for the Expert User

Booting is the process of loading and executing a client program. The client program
is normally an operating system or an operating system’s loader program, but boot
can also be used to load and execute other kinds of programs, such as diagnostics.
(For more details about loading programs other than the operating system, see
Chapter 5 “Loading and Executing Programs™”’).

Booting usually happens automatically based on the values contained in the
configuration variables described above. However, the user can also initiate booting
from the User Interface.

OpenBoot performs the following steps during the boot process:

= The firmware may reset the machine if a client program has been executed since
the last reset. (The execution of a reset is implementation dependent.)

= A device is selected by parsing the boot command line to determine the boot
device and the boot arguments to use. Depending on the form of the boot
command, the boot device and/or argument values may be taken from
configuration variables.

= The boot pat h and boot ar gs properties in the / chosen node of the device tree
are set with the selected values.

= The selected program is loaded into memory using a protocol that depends on the
type of the selected device. For example, a disk boot might read a fixed number of
blocks from the beginning of the disk, while a tape boot might read a particular
tape file.

= The loaded program is executed. The behavior of the program may be further
controlled by the argument string (if any) that was either contained in the selected
configuration variable or was passed to the boot command on the command line.

Often, the program loaded and executed by the boot process is a secondary boot
program whose purpose is to load yet another program. This secondary boot
program may use a protocol different from that used by OpenBoot to load the
secondary boot program. For example, OpenBoot might use the Trivial File Transfer
Protocol (TFTP) to load the secondary boot program while the secondary boot
program might then use the Network File System (NFS) protocol to load the
operating system.

Typical secondary boot programs accept arguments of the form:
filename -fl ags

where filename is the name of the file containing the operating system and where -
flags is a list of options controlling the details of the start-up phase of either the
secondary boot program, the operating system or both. Please note that, as shown in

Chapter 15

the boot command template immediately below, OpenBoot treats all such text as a
single, opaque arguments string that has no special meaning to OpenBoot itself; the
arguments string is passed unaltered to the specified program.

The boot command has the following format:

ok boot [device-specifier] [argunents]

The optional parameters for the boot command are described in TABLE 2-1.

TABLE2-1 Optional boot Command Parameters

Parameter

Description

[device-specifier]

[arguments]

The name (full path name or deval i as) of the boot device. Typical values include:

cdr om(CD-ROM drive)

di sk (hard disk)

f 1 oppy (3-1/2” diskette drive)

net (Ethernet)

t ape (SCSI tape)

If device-specifier is not specified and if di agnost i c- node? returns f al se, boot uses
the device specified by the boot - devi ce configuration variable.

If device-specifier is not specified and if di agnosti c- nbde? returnst r ue, boot uses the
device specified by the di ag- devi ce configuration variable.

The name of the program to be booted (e.g. stand/diag) and any program arguments.

If arguments is not specified and if di agnost i c- node? returns f al se, boot uses the file
specified by the boot - f i | e configuration variable.

If arguments is not specified and if di agnosti c- node? returns t r ue, boot uses the file
specified by the di ag-fi | e configuration variable.

Note — Most commands (such as boot and t est) that require a device name accept
either a full device path name or a device alias. In this manual, the term device-
specifier indicates that either an appropriate device path name or a device alias is
acceptable for such commands.

Since a device alias cannot be syntactically distinguished from the arguments,
OpenBoot resolves this ambiguity as follows:

= If the space-delimited word following boot on the command line begins with /,
the word is a device-path and, thus, a device-specifier. Any text to the right of this
device-specifier is included in arguments.

= Otherwise, if the space-delimited word matches an existing device alias, the word
is a device-specifier. Any text to the right of this device-specifier is included in
arguments.

16 OpenBoot 3.x Command Reference Manual ¢ February 2000

= Otherwise, the appropriate default boot device is used, and any text to the right
of boot is included in arguments.

Consequently, boot command lines have the following possible forms.

ok boot

With this form, boot loads and executes the program specified by the default boot
arguments from the default boot device.

ok boot device-specifier

If boot has a single argument that either begins with the character / or is the name
of a defined deval i as, boot uses the argument as a device specifier. boot loads
and executes the program specified by the default boot arguments from the specified
device.

For example, to explicitly boot from the primary disk, type:

ok boot disk

To explicitly boot from the primary network device, type:

ok boot net

If boot has a single argument that neither begins with the character / nor is the
name of a defined deval i as, boot uses all of the remaining text as its arguments.

ok boot arguments

boot loads and executes the program specified by the arguments from the default
boot device.

ok boot device-specifier arguments

If there are at least two space-delimited arguments, and if the first such argument
begins with the character / or if it is the name of a defined deval i as, boot uses the
first argument as a device specifier and uses all of the remaining text as its
arguments. boot loads and executes the program specified by the arguments from
the specified device.

Chapter 17

For all of the above cases, boot records the device that it uses in the boot pat h
property of the / chosen node. boot also records the arguments that it uses in the
boot ar gs property of the / chosen node.

Device alias definitions vary from system to system. Use the deval i as command,
described in Chapter 1 “Overview””, to obtain the definitions of your system’s
aliases.

18

Running Diagnostics

Several diagnostic routines are available from the User Interface. These on-board
tests let you check devices such as the network controller, the floppy disk system,
memory, installed SBus cards and SCSI devices, and the system clock.

The value returned by di agnost i c- nbde? controls:

= The selection of the device and file that are used by the boot and | oad
commands (if the device and file are not explicitly specified as arguments to those
commands).

= The extent of the diagnostics performed during power-on self-test, and the
(implementation dependent) number of diagnostic messages produced.

OpenBoot will be in diagnostic mode and the di agnost i c- nbde? command will

return t r ue if at least one of the following conditions is met:

= The configuration variable di ag- swi t ch? is set to t r ue.

= The machine’s diagnostic switch (if any) is “on”.

= Another system-dependent indicator requests extensive diagnostics.

When OpenBoot is in the Di agnosti ¢ node, the value of di ag- devi ce is used as

the default boot device and the value of di ag-fi | e is used as the default boot
arguments for the boot command.

When OpenBoot is not in the Di agnosti ¢ nbde, the value of boot - devi ce is
used as the default boot device and the value of boot - fi | e is used as the default boot
arguments for the boot command.

OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 2-2 lists diagnostic test commands. Not all of these tests are available in all
OpenBoot implementations.

TABLE 2-2 Diagnostic Test Commands

Command Description
pr obe- scsi Identify devices attached to a SCSI bus.
t est device-specifier Execute the specified device’s sel ft est method. For example:

wat ch- cl ock

wat ch- net

t est net - test the network connection
Test a clock function.

Monitor a network connection.

Testing the SCSI Bus

To check a SCSI bus for connected devices, type:

Target 1

reserved
Target 3

reserved

ok

ok probe-scsi

Unit O Di sk SEAGATE ST1480 SUN04246266 Copyright (C) 1991 Seagate Al rights

Unit O D sk SEAGATE ST1480 SUN04245826 Copyright (C) 1991 Seagate Al rights

The actual response depends on the devices on the SCSI bus.

Testing Installed Devices

To test a single installed device, type:

ok test device-specifier

In general, if no message is displayed, the test succeeded.

Chapter

19

20

Note — Many devices require the system’s di ag- swi t ch? parameter to be true in
order to run this test.

Testing the Diskette Drive

The diskette drive test determines whether or not the diskette drive is functioning
properly. For some implementations, a formatted, high-density (HD) disk must be in
the diskette drive for this test to succeed.

To test the diskette drive, type:

ok test floppy

Testing fl oppy disk system A fornmatted
di sk should be in the drive.

Test succeeded.

ok

Note — Not all OpenBoot systems include this test word.

To eject the diskette from the diskette drive of a system capable of software-
controlled ejection, type:

ok eject-floppy
ok

Testing Memory

To test memory, type:

ok test /nenory
Testing 16 negs of nenory at addr 4000000 11
ok

Note — Not all OpenBoot systems include this test word.

OpenBoot 3.x Command Reference Manual ¢ February 2000

In the preceding example, the first number (4000000) is the base address of the
testing, and the following number (11) is the number of megabytes to go.

Testing the Clock

To test the clock function, type:

ok wat ch-cl ock

Wat ching the 'seconds’ register of the real tinme clock chip.
It should be ticking once a second.

Type any key to stop.

1

ok

The system responds by incrementing a number once a second. Press any key to stop
the test.

Note — Not all OpenBoot systems include this test word.

Testing the Network Controller

To test the primary network controller, type:

ok test net

Internal Loopback test - (result)
Ext ernal Loopback test - (result)
ok

The system responds with a message indicating the result of the test.

Note — Depending on the particular network controller and the type of network to
which your system is attached, various levels of testing are possible. Some such tests
may require that the network interface be connected to the network.

Chapter 21

Monitoring the Network

To monitor a network connection, type:

ok wat ch- net

I nternal Loopback test - succeeded

Ext ernal Loopback test - succeeded

Looki ng for Ethernet packets.

".’" is a good packet. 'X is a bad packet.
Type any key to stop

TRl

The system monitors network traffic, displaying “. ” each time it receives an error-
free packet and “ X each time it receives a packet with an error that can be detected
by the network hardware interface.

Note — Not all OpenBoot systems include this test word.

22

Displaying System Information

The User Interface provides one or more commands to display system information.
banner is provided by all OpenBoot implementations; the remaining commands
represent extensions provided by some implementations. These commands, listed in
TABLE 2-3, let you display the system banner, the Ethernet address for the Ethernet
controller, the contents of the ID PROM, and the version number of OpenBoot. (The
ID PROM contains information specific to each individual machine, including the
serial number, date of manufacture, and Ethernet address assigned to the machine.)

TABLE 2-3 System Information Commands

Command Description

banner Display power-on banner.

show sbus Display list of installed and probed SBus devices.
. enet - addr Display current Ethernet address.

.idprom Display ID PROM contents, formatted.

OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 2-3 System Information Commands (Continued)

Command Description

.traps Display a list of processor-dependent trap types.
.version Display version and date of the boot PROM.
.speed Display processor and bus speeds.

Also see the device tree browsing commands in TABLE 1-3.

Resetting the System

Occasionally, you may need to reset your system. The r eset - al | command resets
the entire system and is similar to performing a power cycle.

To reset the system, type:

ok reset-all

If your system is set up to run the power-on self-test (POST) and initialization
procedures on reset, these procedures begin executing once you initiate this
command. (On some systems, POST is only executed after power-on.) Once POST
completes, the system either boots automatically or enters the User Interface, just as
it would have done after a power cycle.

Chapter 23

24 OpenBoot 3.x Command Reference Manual ¢ February 2000

CHAPTER 3

Setting Configuration Variables

This chapter describes how to access and modify non-volatile RAM (NVRAM)
configuration variables.

System configuration variables are stored in the system NVRAM. These variables
determine the start-up machine configuration and related communication
characteristics. You can modify the values of the configuration variables, and any
changes you make remain in effect even after a power cycle. Configuration variables
should be adjusted cautiously.

The procedures described in this chapter assume that the user interface is active. See
Chapter 1 “Overview” for information about entering the user interface.

TABLE 3-1 lists a typical set of NVRAM configuration variables defined by IEEE
Standard 1275-1994.

TABLE 3-1 Standard Configuration Variables
Variable Typical Default Description
aut o- boot ? true If true, boot automatically after power on or reset.
boot - command boot Command that is executed if aut o- boot ? is true.
boot - devi ce disk net Device from which to boot.

boot-file

di ag- devi ce
diag-file

di ag-swi tch?
f code- debug?
i nput - devi ce
nvranT c

oem banner

empty string
net

empty string
false

false
keyboard
empty
empty string

Arguments passed to booted program.

Diagnostic boot source device.

Arguments passed to booted program in diagnostic mode.
If true, run in diagnostic mode.

If true, include name fields for plug-in device FCodes.
Console input device (usually keyboard, ttya, orttyb).
Contents of NVRAMRC.

Custom OEM banner (enabled by oem banner ? true).

25

TABLE 3-1 Standard Configuration Variables (Continued)

Variable Typical Default Description

oem banner ? false If true, use custom OEM banner.

oem | ogo no default Byte array custom OEM logo (enabled by oem | ogo? true).
Displayed in hexadecimal.

oem | 0go? false If true, use custom OEM logo (else, use Sun logo).

out put - devi ce screen Console output device (usually screen, ttya, orttyb).

screen-#colums 80 Number of on-screen columns (characters/line).

sScreen- #rows 34 Number of on-screen rows (lines).

security- no default Number of incorrect security password attempts.

#badl ogi ns

security-node none Firmware security level (options: none, command, or ful |).

security- no default Firmware security password (never displayed).

password

use-nvranrc? false If true, execute commands in NVRAMRC during system start-up.

An dditional configuration variable is defined by the SBus binding to IEEE Standard
1275-1994. The variable is shown in TABLE 3-2.

TABLE3-2 SBus Configuration Variable

Variable Typical Default Description

sbus- probe-1Ii st 0123 Which SBus slots to probe and in what order.

Note — Different OpenBoot implementations may use different defaults and/or
different configuration variables.

26 OpenBoot 3.x Command Reference Manual ¢ February 2000

Displaying and Changing Variable
Settings

NVRAM configuration variables can be viewed and changed using the commands
listed in TABLE 3-3.

TABLE 3-3 Viewing or Changing Configuration Variables

Command Description
printenv Display current variables and current default values.

pri nt env variable shows the current value of the named variable.
set env variable value Set variable to the given decimal or text value.

(Changes are permanent, but often take effect only after a reset.)
set - defaul t variable Reset the value of variable to the factory default.
set-defaults Reset variable values to the factory defaults.
passwor d Set security-password

The following pages show how these commands can be used.

Note — Solaris provides the eepr omutility for modifying OpenBoot configuration
variables.

Chapter 27

28

To display a list of the current variable settings on your system, type:

ok printenv

Vari abl e NaneVal ueDef aul t Val ue
oem | ogo2c 31 2¢c 2d 00 00 00 00 ...
oem | ogo?f al sef al se

oem banner

oem banner ?f al sef al se

out put - devi cettyascreen

i nput - devi cet t yakeyboard

sbus- probe-1i st 030123

diag-file
di ag- devi cenet net
boot-file

boot - devi cedi skdi sk net
aut o- boot ?f al setrue

f code- debug?t r uef al se
use-nvranr c?f al sef al se
nvranr c

screen-#col ums8080
screen- #rows3434
security-nbdenonenone
security-password
security-#badl ogi nsO
di ag- swi t ch?truefal se
ok

In the displayed, formatted list of the current settings, numeric variables are often
shown in decimal.

To change a variable setting, type:

ok setenv variable-name value

variable-name is the name of the variable. value is a numeric value or text string
appropriate to the named variable. A numeric value is interpreted as a decimal
number, unless preceded by 0x, which is the qualifier for a hexadecimal number.

For example, to set the aut o- boot ? variable to f al se, type:

ok setenv auto-boot? false
ok

OpenBoot 3.x Command Reference Manual ¢ February 2000

Note — Many variable changes do not affect the operation of the firmware until the next
power cycle or system reset at which time the firmware uses the variable’s new value.

You can reset one or most of the variables to the original defaults using the
set - def aul t variable and set - def aul t s commands.

For example, to reset the aut o- boot ? variable to its default setting (true), type:

ok set-default auto-boot?
ok

To reset most variables to their default settings, type:

ok set-defaults
ok

On SPARC systems, it is possible to reset the NVRAM variables to their default
settings by holding down Stop-N while the machine is powering up. When issuing
this command, hold down Stop-N immediately after turning on the power to the
SPARC system, and keep it pressed for a few seconds or until you see the banner (if
the display is available). This is a good technique to force a SPARC compatible
machine’s NVRAM variables to a known condition.

Setting Security Variables

The NVRAM system security variables are:

= Security-node
= Ssecurity-password
= Security-#badl ogi ns

Chapter 29

securi ty- mode can restrict the set of operations that users are allowed to perform
from the User Interface. The three security modes, and their available commands,
are listed in the following table in the order of most to least secure.

TABLE 3-4 Commands Available for security-mode Settings

Mode Commands

full All commands except for go require the password.

command All commands except for boot and go require the password.
none No password required (default).

Command Security

With securi ty- node set to command:

= A password is not required if you type the boot command by itself. However, if
you use the boot command with an argument, a password is required.

= The go command never asks for a password.
= A password is required to execute any other command.

Examples are shown in the following screen.

ok boot (no password required)

ok go (no password required)

ok boot filename (password required)

Password: (password is not echoed as it is typed)
ok reset-all (password required)

Password: (password is not echoed as it is typed)

Caution — It is important to remember your security password and to set the
security password before setting the security mode. If you forget this password, you
cannot use your system; you must call your vendor’s customer support service to
make your machine bootable again.

30 OpenBoot 3.x Command Reference Manual ¢ February 2000

To set the security password and commrand security mode, type the following at the
ok prompt:

ok password

ok New password (only first 8 chars are used):
ok Retype new password:

ok setenv security-nmode comand

ok

The security password you assign must be between zero and eight characters. Any
characters after the eighth are ignored. You do not have to reset the system; the
security feature takes effect as soon as you type the command.

If you enter an incorrect security password, there will be a delay of about 10 seconds
before the next boot prompt appears. The number of times that an incorrect security
password is typed is stored in the securi t y- #badl ogi ns variable.

Full Security

The full security mode is the most restrictive. With securi ty- node setto ful | :
= A password is required any time you execute the boot command.

= The go command never asks for a password.

= A password is required to execute any other command.

Here are some examples.

ok go (no password required)

ok boot (password required)

Password: (password is not echoed as it is typed)
ok boot filename (password required)

Password: (password is not echoed as it is typed)
ok reset-all (password required)

Password: (password is not echoed as it is typed)

Caution — It is important to remember your security password and to set the
security password before setting the security mode.. If you forget this password, you
cannot use your system; you must call your vendor’s customer support service to
make your machine bootable again.

Chapter 31

To set the security password and f ul | security, type the following at the ok prompt:

ok password

ok New password (only first 8 chars are used):
ok Retype new password:

ok setenv security-nmode full

ok

Changing the Power-on Banner

The banner configuration variables are:
= oem banner

= oem banner?

= oeml ogo

= oeml ogo?

To view the power-on banner, type:

ok banner

Sun Utra 1 SBus (U traSPARC 167 MHz), Keyboard Present PROM Rev.
3.0, 64MB nenory installed, Serial # 289Ethernet address
8:0:20:d:e2: 7b, Host ID: 80000121

ok

The banner for your system may be different.

The banner consists of two parts: the text field and the logo (over serial ports, only
the text field is displayed). You can replace the existing text field with a custom text
message using the oem banner and oem banner ? configuration variables.

To insert a custom text field in the power-on banner, type:

ok setenv oem banner Hell o Mom and Dad
ok setenv oem banner? true

ok banner
Hel l o Mom and Dad
ok

The system displays the banner with your new message, as shown in the preceding
screen.

32 OpenBoot 3.x Command Reference Manual ¢ February 2000

The graphic logo is handled differently. oem | ogo is a 512-byte array, containing a
total of 4096 bits arranged in a 64 x 64 array. Each bit controls one pixel. The most
significant bit (MSB) of the first byte controls the upper-left corner pixel. The next bit
controls the pixel to the right of it, and so on.

To create a new logo, first create a Forth array containing the correct data; then copy
this array into oem | ogo. The array is then installed in oem | ogo with $set env.
The example below fills the top half of oem | ogo with an ascending pattern.

ok create | ogoarray d# 512 all ot

ok | ogoarray d# 256 0 do i over i + c! |oop drop
ok |l ogoarray d# 256 " oemlogo" $setenv

ok setenv oem|ogo? true

ok banner

To restore the system’s original power-on banner, set the oem | ogo? and
oem banner ? variables to f al se.

ok setenv oem | ogo? fal se
ok setenv oem banner? fal se
ok

Because the oem | ogo array is so large, pri nt env displays approximately the first
8 bytes (in hexadecimal). To display the entire array, use the phrase oem | ogo dunp.
The oem | ogo array is not erased by set - def aul t s, since it might be difficult to

restore the data. However, oem | 0go? is set to false when set - def aul t s executes,
so the custom logo is no longer displayed.

Note — Some systems do not support the oem | ogo feature.

Input and Output Control

The console is used as the primary means of communication between OpenBoot and
the user. The console consists of an input device, used for receiving information
supplied by the user, and an output device, used for sending information to the user.
Typically, the console is either the combination of a text/graphics display device and
a keyboard or an ASCII terminal connected to a serial port.

The configuration variables related to the control of the console are:
= input-device

Chapter 33

34

= out put-device
= SCreen-#col ums
= SCreen-#rows

You can use these variables to assign the power-on defaults for the console. These
values do not take effect until after the next power cycle or system reset.

Selecting Input and Output Device Options

The i nput - devi ce and out put - devi ce variables control the firmware’s selection
of input and output devices after a power-on reset. The default i nput - devi ce
value is keyboar d and the default out put - devi ce value is scr een. The values of
i nput - devi ce and out put - devi ce must be device specifiers. The aliases
keyboar d and scr een are often used as the values of these variables.

When the system is reset, the named device becomes the initial firmware console
input or output device. (If you want to temporarily change the input or output
device, use the i nput or out put commands described in Chapter 4 “Using Forth
Tools™)

To set t t ya as the initial console input device, type:

ok setenv input-device ttya
ok

If you select keyboar d for i nput - devi ce, and the device is not plugged in, input
is accepted from a fallback device (typically t t ya) after the next power cycle or
system reset. If you select scr een for out put - devi ce, but no frame buffer is
available, output is sent to the fall-back device after the next power cycle or system
reset.

To specify an SBus frame buffer as the default output device (especially if there are
multiple frame buffers in the system), type:

ok setenv output-device /sbus/ SUNWI eo
ok

Serial Port Characteristics

The following values represent the typical range of communications characteristics
for serial ports:

OpenBoot 3.x Command Reference Manual ¢ February 2000

= baud = 110, 300, 1200, 2400, 4800, 9600, 19200, or 38400 bits/second
= #bits =5, 6, 7, or 8 (data bits)

= parity = n (none), e (even), or o (odd), parity bit

= d#stop =1 (1),. (1.5), or 2 (2) stop bits

Note — rts/cts and xon/xoff handshaking are not implemented on some systems.
When a selected protocol is not implemented, the handshake variable is accepted but
ignored; no messages are displayed.

Selecting Boot Options

You can use the following configuration variable to determine whether or not the
system will boot automatically after a power cycle or system reset.

= aut o- boot ?

If aut o-boot ? istrue and if OpenBoot is not in diagnostic mode, the system
boots automatically after a power-cycle or system reset using the boot - devi ce and
boot - fi | e values.

These variables can also be used during manual booting to select the boot device
and the program to be booted. For example, to specify default booting from the
network server, type:

ok setenv boot-device net
ok

Changes to boot -fi |l e and boot - devi ce take effect the next time that boot is
executed.

Controlling Power-on Self-Test (POST)

The Power-on Testing variables are;
=« diag-switch?

= di ag-device

« diag-file

Chapter 35

= diag-1evel
Setting di ag- swi t ch? to t r ue causes the function di agnost i c- node? to return
true. When di agnost i c- node? returns t r ue, the system:

= Performs more thorough self tests during any subsequent power-on or system
reset process.

= May display additional status messages (the details are implementation
dependent).

= Uses different configuration variables for booting. (For more details on the effects
on the boot process, see Chapter 2 “Booting and Testing Your System™)

Most systems have a factory default of f al se for the di ag- swi t ch? variable. To
set di ag- swi t ch? to true, type:

ok setenv diag-switch? true
ok

Note — Some systems have a hardware diagnostic switch that also cause
di agnosti c- nbde? to return t r ue. Such systems run the full tests at power-on
and system reset if either the hardware switch is set or di ag- swi t ch? istrue.

Note — Some implementations enable you to force di ag- swi t ch? to t r ue by using
an implementation-dependent key sequence during power-on. Check your system’s

documentation for details, or see Appendix C “Troubleshooting Guide”.

To set di ag-swi t ch? to f al se, type:

ok setenv diag-sw tch? fal se
ok

When not in diagnostic mode, the system does not announce the diagnostic tests as
they are performed (unless a test fails) and may perform fewer tests.

Using nvramrc

The nvr anr ¢ configuration variable whose contents are called the script, can be used
to store user-defined commands executed during start-up.

36 OpenBoot 3.x Command Reference Manual ¢ February 2000

Typically, nvr anr c is used by a device driver to save start-up configuration
variables, to patch device driver code, or to define installation-specific device
configuration and device aliases. It can also be used for bug patches or for user-
installed extensions. Commands are stored in ASCII, just as the user would type
them at the console.

If the use- nvr anr c? configuration variable is t r ue, the script is evaluated during
the OpenBoot start-up sequence as shown:

= Perform power-on self-test (POST)

= Perform system initialization

= Evaluate the script (if use- nvranr c? is true)
= Execute probe-al | (evaluate FCode)

= Executeinstall-consol e

= Execute banner

= Execute secondary diagnostics

= Perform default boot (if aut o- boot ? is true)

It is sometimes desirable to modify the sequence probe-al |l i nstall-consol e
banner. For example, commands that modify the characteristics of plug-in display
devices may need to be executed after the plug-in devices have been probed, but
before the console device has been selected. Such commands would need to be
executed between probe-al | andinstall-consol e. Commands that display
output on the console would need to be placed after i nst al | - consol e or banner.

This is accomplished by creating a custom script which contains either banner or
suppr ess- banner since the sequence probe-al | i nstal |l -consol e banner is
not executed if either banner or suppr ess- banner is executed from the script.
This allows the use of probe-al | ,i nstal | -consol e and banner inside the
script, possibly interspersed with other commands, without having those commands
re-executed after the script finishes.

Most User Interface commands can be used in the script. The following cannot:
= boot

= Qo

= nvedit

= password

= reset-all

= setenv security-node

Chapter 37

Editing the Contents of the Script

The script editor, nvedi t, lets you create and modify the script using the commands

listed in TABLE 3-5.

TABLE 3-5

Commands Affecting NVRAMAC

Command

Description

nval i as alias device-path

$nval i as

nvedi t

nvqui t

nvrecover

nvrun

nvstore

nvunal i as alias

$nvunal i as

Stores the command “devalias alias device-path” in the script. The alias
persists until either nvunal i as or set - def aul t s is executed.

Performs the same function as nval i as except that it takes its arguments,
name-string and device-string, from the stack.

Enters the script editor. If data remains in the temporary buffer from a
previous nvedi t session, resumes editing those previous contents. If not,
reads the contents of nvr anr ¢ into the temporary buffer and begins
editing it.

Discards the contents of the temporary buffer, without writing it to
nvranr c. Prompts for confirmation.

Recovers the contents of nvr anr c if they have been lost as a result of the
execution of set - def aul t s; then enters the editor as with nvedi t .
nvrecover failsif nvedi t is executed between the time that the nvranr c
contents were lost and the time that nvr ecover is executed.

Executes the contents of the temporary buffer.

Copies the contents of the temporary buffer to nvr anr c; discards the
contents of the temporary buffer.

Deletes the specified alias from nvranrc.

Performs the same function as nvunal i as except that it takes its
argument, name-string, from the stack.

The editing commands shown in TABLE 3-6 are used in the script editor.

TABLE 3-6 Script Editor Keystroke Commands
Keystroke Description
Control-B Moves backward one character.
Escape B Moves backward one word.
Control-F Moves forward one character.
Escape F Moves forward one word.
Control-A Moves backward to beginning of the line.

38 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 3-6 Script Editor Keystroke Commands (Continued)

Keystroke Description

Control-E Moves forward to end of the line.

Control-N Moves to the next line of the script editing buffer.
Control-P Moves to the previous line of the script editing buffer.

Return (Enter)
Control-O
Control-K

Delete
Backspace
Control-H

Escape H

Control-W

Control-D
Escape D
Control-U
Control-Y
Control-Q
Control-R
Control-L
Control-C

Inserts a new line at the cursor position and advances to the next line.
Inserts a newline at the cursor position and stays on the current line.

Erases from the cursor position to the end of the line, storing the erased characters in a save
buffer. If at the end of a line, joins the next line to the current line (i.e. deletes the newline).

Erases the previous character.
Erases the previous character.
Erases the previous character.

Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Erases the next character.

Erases from the cursor to the end of the word, storing the erased characters in a save buffer.

Erases the entire line, storing the erased characters in a save buffer.
Inserts the contents of the save buffer before the cursor.

Quotes the next character (i.e. allows you to insert control characters).
Retypes the line.

Displays the entire contents of the editing buffer.

Exits the script editor, returning to the OpenBoot command interpreter. The temporary
buffer is preserved, but is not written back to the script. (Use nvst or e afterwards to write
it back.)

Activating the Script

Use the following steps to create and activate the script:

e At the ok prompt, type nvedi t .

Edit the script using editor commands.

e Type Contr ol - Cto get out of the editor and back to the ok prompt.

Chapter

39

40

If you have not yet typed nvst or e to save your changes, you may type nvr un to
execute the contents of the temporary edit buffer.

1. Type nvst or e to save your changes.

2. Enable the interpretation of the script by typing:

setenv use-nvranrc? true

3. Type reset-all to reset the system and execute the script, or type:

nvranr ¢ eval uate

to execute the contents directly.

The following example shows you how to create a simple colon definition in the

script.
ok nvedit
0: : hello (--)
1: ." Hello, world. " cr
2.
3: ~"C

ok nvstore
ok setenv use-nvranrc? true
ok reset-all

ok hello

Hel | o, worl d.
ok

Notice the nvedi t line number prompts (0:, 1:, 2:, 3:) in the above example. These
prompts are system-dependent.

OpenBoot 3.x Command Reference Manual ¢ February 2000

CHAPTER 4

Using Forth Tools

This chapter introduces the Forth programming language as it is implemented in
OpenBoot. Even if you are familiar with Forth, work through the examples shown in
this chapter; they provide specific, OpenBoot-related information.

The version of Forth contained in OpenBoot is based on ANS Forth. Appendix |
“Forth Word Reference”,” lists the complete set of available commands.

Note — This chapter assumes that you know how to enter and leave the User
Interface. At the ok prompt, if you type commands that hang the system and you
cannot recover using a key sequence, you may need to perform a power cycle to
return the system to normal operation.

Forth Commands

Forth has a very simple command structure. Forth commands, also called Forth
words, consist of any combination of characters that can be printed. For example,
letters, digits, or punctuation marks. Examples of legitimate words are shown below:

@

dunp

0<

+

pr obe- scsi

41

42

Forth words must be separated from one another by one or more spaces (blanks). Characters
that are normally treated as “punctuation” in some other programming languages
do not separate Forth words. In fact, many of those “punctuation” characters are
Forth words!

Pressing Return at the end of any command line executes the typed commands. (In
all the examples shown, a Return at the end of the line is assumed.)

A command line can have more than one word. Multiple words on a line are
executed one at a time, from left to right, in the order in which they were typed. For
example:

ok testa testb testc
ok

is equivalent to:

ok testa
ok testh
ok testc
ok

In OpenBoot, uppercase and lowercase letters are equivalent in Forth word names.
Therefore, t est a, TESTA, and TesTa all invoke the same command. However,
words are conventionally written in lowercase.

Some commands generate large amounts of output (for example, dunp or wor ds).
You can interrupt such a command by pressing any key except q. (If you press q, the
output is aborted, not suspended.) Once a command is interrupted, output is
suspended and the following message appears:

More [<space>, <cr>,q] ?

Press the space bar (<space>) to continue, press Return (<cr >) to output one more
line and pause again, or type g to abort the command. When a command generates
more than one page of output, the system automatically displays this prompt at the
end of each page.

OpenBoot 3.x Command Reference Manual ¢ February 2000

Data Types

The terms shown in TABLE 4-1 describe the data types used by Forth.

TABLE 4-1 Forth Data Type Definitions

Notation Description

byte IAn 8-bit value.

icell IThe implementation-defined fixed size of a cell is specified in address units and the
corresponding number of bits. Data-stack elements, return-stack elements, addresses,
execution tokens, flags and integers are one cell wide.
On OpenBoot systems, a cell consists of at least 32-bits, and is sufficiently large to contain a
\virtual address. The cell size may vary between implementations. A 32-bit implementation
has a cell size of 4. A 64-bit implementation has a cell size of 8. OpenBoot 3.x is a 64-bit
implementation.

doublet A 16-bit value.

octlet IA 64-bit value; only defined on 64-bit implementations,

quadlet IA 32-bit value.

Using Numbers

Enter a number by typing its value, for example, 55 or -123. Forth accepts only
integers (whole numbers); it does not understand fractional values (e.g., 2/3). A
period at the end of a number signifies a double number. Periods or commas
embedded in a number are ignored, so 5.77 is understood as 577. By convention,
such punctuation usually appears every four digits. Use one or more spaces to
separate a number from a word or from another number.

Unless otherwise specified, OpenBoot performs integer arithmetic on data items that
are one cell in size, and creates results that are one cell in size.

Although OpenBoot implementations are encouraged to use base 16 (hexadecimal)
by default, they are not required to do so. Consequently, you must establish a
specific number base if your code depends on a given base for proper operation. You
can change the number base with the commands deci mal and hex to cause all
subsequent numeric input and output to be performed in base 10 or 16, respectively.

Chapter 43

For example, to operate in decimal, type:

ok deci nal
ok

To change to hexadecimal, type:

ok hex
ok

To identify the current number base, you can use:

ok 10 .d
16
ok

The 16 on the display shows that you are operating in hexadecimal. If 10 showed on
the display, it would mean that you are in decimal base. The . d command displays
a number in base 10, regardless of the current number base.

44

The Stack

The Forth stack is a last-in, first-out buffer used for temporarily holding numeric
information. Think of it as a stack of books: the last one you put on the top of the
stack is the first one you take off. Understanding the stack is essential to using Forth.

To put a number on the stack, simply type its value.

ok 44 (The value 44 is now on top of the stack)
ok 7 (The value 7 is now on top, with 44 just underneath)
ok

OpenBoot 3.x Command Reference Manual ¢ February 2000

Displaying Stack Contents

The contents of the stack are normally invisible. However, properly visualizing the
current stack contents is important for achieving the desired result. To show the
stack contents with every ok prompt, type:

ok showst ack

44 7 ok 8

44 7 8ok noshowst ack
ok

The topmost stack item is always shown as the last item in the list, immediately
before the ok prompt. In the above example, the topmost stack item is 8.

If showst ack has been previously executed, noshowst ack will remove the stack
display prior to each prompt.

Note — In some of the examples in this chapter, showst ack is enabled. In those
examples, each ok prompt is immediately preceded by a display of the current
contents of the stack. The examples work the same if showst ack is not enabled,
except that the stack contents are not displayed.

Nearly all words that require numeric parameters fetch those parameters from the
top of the stack. Any values returned are generally left on top of the stack, where
they can be viewed or consumed by another command. For example, the Forth word
+ removes two numbers from the stack, adds them together, and leaves the result on
the stack. In the example below, all arithmetic is in hexadecimal.

44 7 8 ok +
44 f ok +
53 ok

Chapter 45

46

Once the two values are added together, the result is put onto the top of the stack.
The Forth word . removes the top stack item and displays that value on the screen.
For example:

53 ok 12

53 12 ok .

12

53 ok .

53

ok (The stack is now enpty)
ok 3 5 + .

8

ok (The stack is now enpty)
ok .

St ack Underfl ow

ok

The Stack Diagram

To aid understanding, conventional coding style requires that a stack diagram of the
form (--) appear on the first line of every definition of a Forth word. The stack
diagram specifies what the execution of the word does to the stack.

Entries to the left of - - represent those stack items that the word removes from the
stack and uses during its operation. The right-most of these items is on top of the
stack, with any preceding items beneath it. In other words, arguments are pushed
onto the stack in left to right order, leaving the most recent one (the right-most one
in the diagram) on the top.

Entries to the right of - - represent those stack items that the word leaves on the
stack after it finishes execution. Again, the right-most item is on top of the stack,
with any preceding items beneath it.

For example, a stack diagram for the word + is:
(nul nu2 -- sum)

Therefore, + removes two numbers (nul and nu2) from the stack and leaves their
sum (sum on the stack. As a second example, a stack diagram for the word. is:

(nu--)
The word . removes the number on the top of the stack (nu) and displays it.

Words that have no effect on the contents of the stack (such as showst ack or
deci mal), havea (--) stack diagram.

OpenBoot 3.x Command Reference Manual ¢ February 2000

Occasionally, a word will require another word or other text immediately following

it on the command line. The word see, used in the form:

see thisword

is such an example.

Stack items are generally written using descriptive names to help clarify correct
usage. See TABLE 4-2 for stack item abbreviations used in this manual.

TABLE 4-2 Stack Item Notation
Notation Description
| IAlternate stack results shown with space, e.g. (i nput -- addr len false |
result true).
???

Unknown stack item(s).

Unknown stack item(s). If used on both sides of a stack comment, means the

same stack items are present on both sides.

< > <space>

Space delimiter. Leading spaces are ignored.

Memory address (generally a virtual address).

IAddress and length for memory region

8-bit value (low order byte in a cell).

7-bit value (low order byte in a cell, high bit of low order byte unspecified).

Double (extended-precision) numbers. 2 cells, most significant cell on top of

Normal signed, one-cell values.

Signed or unsigned one-cell values.

a- addr \Variable-aligned address.
addr
addr |en
byt e bxxx
char
cnt Count.
| en Length.
si ze Count or length.
dxxx
stack.
<eol > End-of-line delimiter.
fal se 0 (false flag).
n nl n2 n3
nu nul
<not hi ng> Zero stack items.

o ol 02 octl oct2

Octlet (64 bit signed value).

oaddr

Octlet (64-bit) aligned address.

oct | et

AN eight-byte quantity.

phys

Physical address (actual hardware address).

Chapter

47

TABLE 4-2 Stack Item Notation (Continued)

Notation Description
phys. | o phys. hi Lower / upper cell of physical address.
pstr Packed string.
quad gxxx Quadlet (32-bit value, low order four bytes in a cell).
qaddr Quadlet (32-bit) aligned address.
true -1 (true flag).
UXXX Unsigned positive, one-cell values.
virt \Virtual address (address used by software).
waddr Doublet (16-bit) aligned address.
Mmord wxxx Doublet (16-bit value, low order two bytes in a cell).
X x1 IArbitrary, one cell stack item.
X.lo x.hi Low/high significant bits of a data item.
Xt Execution token.
XXX ? Flag. Name indicates usage (e.g. done? ok? error?).
Xyz-str xyz-len IAddress and length for unpacked string.
Xyz-sys Control-flow stack items, implementation-dependent.
(C --) Compilation stack diagram.
(--)(E --) Execution stack diagram.
(R --) Return stack diagram.
Manipulating the Stack
Stack manipulation commands (described in TABLE 4-3) allow you to add, delete, and
reorder items on the stack.
TABLE 4-3 Stack Manipulation Commands
Comman
d Stack Diagram Description
cl ear (77?7 --) Empty the stack.
depth (o= u) Return the number of items on the stack.
drop (x--) Remove top item from the stack.
2dr op (x1x2--) Remove 2 items from the stack.

48 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-3 Stack Manipulation Commands (Continued)

Comman

d Stack Diagram Description

3drop (x1x2x3-) Remove 3 items from the stack.

dup (Xx--XxX) Duplicate the top stack item.

2dup (X1 %2 -- x1 x2 x1 x2) Duplicate 2 stack items.

3dup (X1 x2 x3 -- x1 x2 x3 x1 x2 x3) Duplicate 3 stack items.

?dup (x--xx]10) Duplicate the top stack item if it is non-zero.
nip (x1x2--x2) Discard the second stack item.

over (X1 x2--x1x2x1) Copy second stack item to top of stack.
2over (X1 X2 x3 x4 -- x1 x2 x3 x4 x1 x2) Copy second 2 stack items.

pi ck (xu...x1x0u--xu...x1x0xu) Copy u-th stack item (1 pi ck = over).
>r (x--)(R:--x) Move a stack item to the return stack.
r> (-x)(R:x-) Move a return stack item to the stack.
r@ (-x)(R:x--x) Copy the top of the return stack to the stack.
roll (xu ... x1x0u--xu-1...x1x0xu) Rotate u stack items (2 rol | =rot).

r ot (X1 %2 x3 -- x2 x3 x1) Rotate 3 stack items.

-rot (X1 x2 x3 -- x3 x1 x2) Inversely rotate 3 stack items.

2rot (X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) Rotate 3 pairs of stack items.

swap (x1x2--x2x1) Exchange the top 2 stack items.

2swap (X1 %2 X3 x4 -- x3 x4 x1 x2) Exchange 2 pairs of stack items.

tuck (X1 x2--x2x1x2) Copy top stack item below second item.

A typical use of stack manipulation might be to display the top stack item while

preserving all stack items, as shown in this example:

5 77 ok dup
5 77 77 ok .
77

5 77 ok

(Duplicates the top itemon the stack)
(Renmoves and displays the top stack item

Chapter

49

50

Creating Custom Definitions

Forth provides an easy way to create new command words from sequences of
existing words. TABLE 4-4 shows the Forth words used to create such new words.

TABLE 4-4 Colon Definition Words

Command Stack Diagram Description
: new-name (--) Start a new colon definition of the word new-name.
; (--) End a colon definition.

This kind of word is called a colon definition, named after the word that is used to
create them. For example, suppose you want to create a new word, add4, that will
add any four numbers together and display the result. You could create the
definition as follows:

ok : add4 + + + .
ok

The ; (semicolon) marks the end of the definition that defines add4 to have the
behavior (+ + + .). The three addition operators (+) reduce the four stack items to
a single sum on the stack; then . removes and displays that result. An example
follows.

ok 1233+ + +.
9

ok 1 2 3 3 add4
9

ok

Definitions are forgotten if a machine reset takes place. To keep useful definitions,
put them into the script or save them in a text file on a host system. This text file can
then be loaded as needed. (See Chapter 5 “Loading and Executing Programs” for
more information on loading files.)

OpenBoot 3.x Command Reference Manual ¢ February 2000

When you type a definition from the User Interface, the ok prompt becomes a]
(right square bracket) prompt after you type the : (colon) and before you type the ;
(semicolon). For example, you could type the definition for add4 like this:

ok : add4
] ++ +
] .

1

ok

The above use of]| while inside a multi-line definition is a characteristic of Sun’s
implementation.

= The stack diagram shows proper use of a word, so include a stack diagram with
every definition you create, even if the stack effect is nil (--) . Use generous stack
comments in complex definitions to trace the flow of execution. For example,
when creating add4, you could define it as:

add4 (nln2n3nd --) +++ . ;

Or you could define it as follows:

add4 (nl n2 n3 n4 --)
+ + +(sum)

()

Note — The ”(“ is a Forth word meaning ignore the text up to the “)”. Like any other
Forth word, the “(* must have one or more spaces after it.

Chapter 51

Using Arithmetic Functions

Single-Precision Integer Arithmetic

The commands listed in TABLE 4-5 perform single-precision arithmetic.

TABLE 4-5 Single-Precision Arithmetic Functions

Command Stack Diagram Description

+ (nul nu2 -- sum) Adds nul + nu2.

- (nul nu2 -- diff) Subtracts nul - nu2.

* (nul nu2 -- prod) Multiplies nul times nu2.

*/ (nln2n3--quot) Calculates nul * nu2 / n3. Inputs, outputs and
intermediate products are all one cell.

/ (nln2--quot) Divides nl1 by n2; remainder is discarded.

1+ (nul--nu2) Adds one.

1- (nul--nu2) Subtracts one.

2+ (nul--nu2) Adds two.

2- (nul--nu2) Subtracts two.

abs (n--u) Absolute value.

bounds (start len -- len+start start) Converts start,len to end,start for do or ?do loop.

even (n--n]n+l) Round to nearest even integer >=n.

max (nln2--n3) n3 is maximum of nl1 and n2

mn (nln2--n3) n3 is minimum of nl and n2

nmod (n1n2--rem) Remainder of n1 / n2.

* [nod (nln2n3--rem quot) Remainder, quotient of n1 * n2 / n3.

/ mod (nln2--rem quot) Remainder, quotient of nl1 / n2.

negat e (nl--n2) Change the sign of nl.

u* (ul u2 -- uprod) Multiply 2 unsigned numbers yielding an unsigned
product.

u/ nod (ul u2 -- urem uquot) Divide unsigned one-cell number by an unsigned one-cell

number; yield one-cell remainder and quotient.

52 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-5 Single-Precision Arithmetic Functions (Continued)

Command Stack Diagram Description
<< (x1lu--x2) Synonym for | shi ft.
>> (x1lu--x2) Synonym for rshift.
2* (x1--x2) Multiply by 2.
2/ (x1--x2) Divide by 2.
>>a (x1lu--x2) Arithmetic right-shift x1 by u bits.
and (x1x2--x3) Bitwise logical AND.
invert (x1--x2) Invert all bits of x1.
I shift (x1lu--x2) Left-shift x1 by u bits. Zero-fill low bits.
not (x1--x2) Synonym for i nvert.
or (x1x2--x3) Bitwise logical OR.
rshift (xlu--x2) Right-shift x1 by u bits. Zero-fill high bits.
u2/ (x1--x2) Logical right shift 1 bit; zero shifted into high bit.
xor (x1x2--x3) Bitwise exclusive OR.
Double Number Arithmetic
The commands listed in TABLE 4-6 perform double number arithmetic.
TABLE4-6 Double Number Arithmetic Functions
Command Stack Diagram Description
d+ (d1d2--d.sum) Add d1 to d2 yielding double number d.sum.
d- (d1d2 --d.diff) Subtract d2 from d1 yielding double number d.diff.
f m nmod (dn--rem quot) Divide d by n.
n (nln2--d) Signed multiply with double-number product.
s>d (nl--di1) Convert a number to a double number.
sm rem (d n--rem quot) Divide d by n, symmetric division.
unt (ulu2--ud) Unsigned multiply yielding unsigned double number product.
um nod (ud u--uremuprod) Divide ud by u.

Chapter

53

Data Type Conversion

The commands listed in TABLE 4-7 perform data type conversion.

TABLE 4-7 32-Bit Data Type Conversion Functions

Command Stack Diagram Description

bl join (' b.low b2 b3 b.hi -- quad) Join four bytes to form a quadlet
bwj oi n (' b.low b.hi -- word) Join two bytes to form a doublet.
Ibflip (quadl -- quad?) Reverse the bytes in a quadlet

| bsplit (quad -- b.low b2 b3 b.hi) Split a quadlet into four bytes.
Iwflip (quadl -- quad?) Swap the doublets in a quadlet.
Iwsplit (quad -- w.low w.hi) Split a quadlet into two doublets.
wbf lip (wordl -- word?2) Swap the bytes in a doublet.

wbspl it (word -- b.low b.hi) Split a doublet into two bytes.
wjoin (w.low w.hi -- quad) Join two doublets to form a quadlet.

The data type conversion commands listed in TABLE 4-8 are available only on 64-bit
OpenBoot implementations.

TABLE 4-8 64-Bit Data Type Conversion Functions

Command Stack Diagram Description

bxj oi n (b.lob.2b.3b.4b.5b.6b.7b.hi--0) Join eight bytes to form an octlet.

I xj oin (quad.lo quad.hi -- 0) Join two quadlets to form an octlet.

WXj 0i n (w.low.2 w3 whi--o0) Join four doublets to form an octlet.

xbflip (octl -- oct2) Reverse the bytes in an octlet.

xbsplit (o--b.lob.2b.3b.4b.5b.6b.7b.hi) Split an octlet into eight bytes.

xIflip (octl -- oct2) Reverse the quadlets in an octlet. The bytes in each
quadlet are not reversed.

xlIsplit (o--quad.loquad.hi) Split on octlet into two quadlets.

xwflip (octl -- oct2) Reverse the doublets in an octlet. The bytes in each
doublet are not reversed.

xwsplit (o0--wlow2w3w.hi) Split an octlet into four doublets.

54 OpenBoot 3.x Command Reference Manual ¢ February 2000

Address Arithmetic

The commands listed in TABLE 4-9 perform address arithmetic.

TABLE 4-9 Address Arithmetic Functions

Command Stack Diagram Description

al i gned (nl--nl] a-addr) Increase nl if necessary to yield a variable aligned address.
/c (-n) The number of address units to a byte: 1.

/c* (nul--nu2) Synonym for char s.

ca+ (addrl index -- addr2) Increment addrl by index times the value of / c.
cal+ (addrl -- addr2) Synonym for char +.

cell + (addrl -- addr2) Increment addrl by the value of / n.

cells (nul--nu2) Multiply nul by the value of / n.

char + (addrl -- addr2) Increment addrl by the value of / c.

chars (nul--nu2) Multiply nul by the value of / c.

/1 (-n) Number of address units to a quadlet; typically 4.
/1= (nul--nu2) Multiply nul by the value of / | .

| a+ (addrl index -- addr2) Increment addrl by index times the value of /| .
lal+ (addrl -- addr2) Increment addrl by the value of /| .

/'n (-n) Number of address units in a cell.

/ n* (nul--nu2) Synonym for cel | s.

na+ (addrl index -- addr2) Increment addrl by index times the value of / n.
nal+ (addrl -- addr2) Synonym for cel | +.

/w (-n) Number of address units to a doublet; typically 2.
[wF (nul--nu2) Multiply nul by the value of / w

wa+ (addrl index -- addr2) Increment addrl by index times the value of / w
wal+ (addrl -- addr2) Increment addrl by the value of / w

Chapter

55

The address arithmetic commands listed in TABLE 4-10 are available only on 64-bit
OpenBoot implementations.

TABLE 4-10 64-Bit Address Arithmetic Functions

Command Stack Diagram Description

/ x (-n) Number of address units in an octlet, typically
eight.

/ x* (nul--nu2) Multiply nul by the value of / x.

xa+ (‘addrl index -- addr2) Increment addrl by index times the value of /
X.

xal+ (addrl -- addr2) Increment addrl by the value of / x.

Accessing Memory

Virtual Memory

The User Interface provides interactive commands for examining and setting
memory. With it, you can:

= Read and write to any virtual address.

= Map virtual addresses to physical addresses.

Memory operators let you read from and write to any memory location. All memory
addresses shown in the examples that follow are virtual addresses.

A variety of 8-bit, 16-bit, and 32-bit (and in some systems, 64-bit) operations are
provided. In general, a ¢ (character) prefix indicates an 8-bit (one byte) operation; a
w (word) prefix indicates a 16-bit (doublet) operation; an | (longword) prefix
indicates a 32-bit (quadlet) operation; and an x prefix indicates a 64-bit (octlet)
operation.

56 OpenBoot 3.x Command Reference Manual ¢ February 2000

waddr, qaddr, and oaddr indicate addresses with alignment restrictions. For
example, gaddr indicates 32-bit (4 byte) alignment; on many systems such an
address must be a multiple of 4, as shown in the following example:

ok 4028 | @
ok 4029 | @

ok

Menory address not aligned

Forth, as implemented in OpenBoot, adheres closely to the ANS Forth Standard. If
you explicitly want a 16-bit fetch, a 32-bit fetch or (on some systems) a 64-bit fetch,
use W@ | @or x@ instead of @ Other memory and device register access commands

also follow this convention.

TABLE 4-11 lists commands used to access memory.

TABLE 4-11 Memory Access Commands

Command Stack Diagram Description

! (x a-addr --) Store a number at a-addr.

+! (nu a-addr --) Add nu to the number stored at a-addr.

@ (a-addr -- x) Fetch a number from a-addr.

2! (x1 x2 a-addr --) Store 2 numbers at a-addr, x2 at lower address.

2@ (a-addr -- x1 x2) Fetch 2 numbers from a-addr, x2 from lower address.

bl ank (addr len --) Set len bytes of memory beginning at addr to the space
character (decimal 32).

c! (byte addr --) Store byte at addr.

c@ (addr -- byte) Fetch a byte from addr.

cpeek (‘addr -- false | byte true) Attempt to fetch the byte at addr. Return the data and t r ue if
the access was successful. Return f al se if a read access
error occurred.

cpoke (byte addr -- okay?) Attempt to store the byte to addr. Return t r ue if the access
was successful. Return f al se if a write access error
occurred.

conp (addrl addr2 len -- diff?) Compare two byte arrays. diff? is 0 if the arrays are identical,
diff? is -1 if the first byte that is different is lesser in the string
at addrl, diff? is 1 otherwise.

dunp (addr len --) Display len bytes of memory starting at addr.

erase (addr len --) Set len bytes of memory beginning at addr to 0.

fill

(addr len byte --)

Set len bytes of memory beginning at addr to the value byte.

Chapter 57

TABLE 4-11 Memory Access Commands (Continued)

Command Stack Diagram Description

I! (g gaddr --) Store a quadlet g at gaddr.

|l @ (gaddr --q) Fetch a quadlet q from gaddr.

I bflips (qaddr len --) Reverse the bytes in each quadlet in the specified region.

Iwflips (gaddr len --) Swap the doublets in each quadlet in specified region.

| peek (qaddr -- false | quad true) Attempt to fetch the quadlet at gaddr. Return the data and
true if the access was successful. Return f al se if a read
access error occurred.

| poke (g gaddr -- okay?) Attempt to store the quadlet 8 at gaddr. Return t r ue if the
access was successful. Return f al se if a a write access error
occurred.

nmove ('src-addr dest-addr len --) Copy len bytes from src-addr to dest-addr.

of f (a-addr --) Store f al se at a-addr.

on (a-addr --) Store t r ue at a-addr.

unal i gned-1! (qgaddr--) Store a quadlet g, any alignment

unaligned-1@ (addr--q) Fetch a quadlet g, any alignment.

unal i gned-w (w addr --) Store a doublet w, any alignment.

unal i gned-w@ (addr --w) Fetch a doublet w, any alignment.

wi (w waddr --) Store a doublet w at waddr.

w@ (waddr -- w) Fetch a doublet w from waddr.

W@ (waddr --n) Fetch doublet n from waddr, sign-extended.

wbf | i ps (waddr len --) Swap the bytes in each doublet in the specified region.

wpeek (' waddr -- false | w true) Attempt to fetch the doublet w at waddr. Return the data and
true if the access was successful. Return f al se if a read
access error occurred.

wpoke (w waddr -- okay?) Attempt to store the doublet w to waddr. Return t r ue if the

access was successful. Return f al se if a write access error
occurred.

58 OpenBoot 3.x Command Reference Manual ¢ February 2000

The memory access commands listed in TABLE 4-12 are available only on 64-bit
OpenBoot implementations.

TABLE 4-12 64-Bit Memory Access Functions

Command Stack Diagram Description

<l @ (gaddr --n) Fetch quadlet from gaddr, sign-extended.

X@ (oaddr --0) Fetch octlet from an octlet aligned address.

x! (0 oaddr --) Store octlet to an octlet aligned address.

xbfli ps (oaddr len --) Reverse the bytes in each octlet in the given region.The behavior
is undefined if len is not a multiple of / x.

xIflips (oaddr len --) Reverse the quadlets in each octlet in the given region. The bytes
in each quadlet are not reversed. The behavior is undefined if len
is not a multiple of / x.

xwf | i ps (oaddr len --) Reverse the doublets in each octlet in the given region. The bytes

in each doublet are not reversed. The behavior is undefined if len
is not a multiple of / x.

The dunp command is particularly useful. It displays a region of memory as both
bytes and ASCII values. The example below displays the contents of 20 bytes of
memory starting at virtual address 10000.

ok 10000 20 dump(Di splay 20 bytes of menory starting at virtual address 10000)

\/ 1

2 3 4 5 6 7

8 9 a b ¢ d e f v123456789abcdef

10000 05 75 6e 74 69 6¢c 00 40 4e d4 00 00 da 18 00 00 .until.@NT..Z. ..

10010 ce da 00 00 f4 f4 00 00

ok

fe dc 00 00 d3 Oc 00 00 NZ..tt..~\..S. ..

Some implementations support variants of dunp that display memory as 16-, 32- and
64-bit values. You can use si fti ng dunp (see “Searching the Dictionary” on page
63) to find out if your system has such variants.

If you try to access an invalid memory location (with @ for example), the operation
may abort and display an error message, such as Dat a Access Excepti on or Bus

Error.

Chapter

59

TABLE 4-13 lists memory mapping commands.

TABLE 4-13 Memory Mapping Commands

Command Stack Diagram Description
al | oc- mem (len -- a-addr) Allocate len bytes of memory; return the virtual address.
free-nem (a-addr len --) Free memory allocated by al | oc- nem
The following screen is an example of the use of al | oc- mremand f r ee- nem
= al | oc- nemallocates 4000 bytes of memory, and the starting address (ef 7a48) of
the reserved area is displayed.
= dunp displays the contents of 20 bytes of memory starting at ef 7a48.
= This region of memory is then filled with the value 55.
= Finally, f r ee- memreturns the 4000 allocated bytes of memory starting at ef 7a48.
ok
ok 4000 all oc-nmem .
ef 7a48
ok
ok ef 7a48 constant tenp
ok tenp 20 dunp
0 1 2 3 45 6 7 \/ 9 ab c d e f 01234567v9abcdef
ef 7a40 00 00 f5 5f 00 00 40 08 ff ef c4 40 ff ef 03 ¢c8 ..u_..@.oD@o.H
ef 7a50 00 00 00 00 OO0 00 OO0 OO 00 OO0 OO OO0 OO0 OO OO OO0
ef 7a60 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
ok tenp 20 55 fill
ok tenp 20 dunp
0 1 2 3 45 6 7 \/ 9 ab c d e f 01234567v9abcdef
ef 7a40 00 00 f5 5f 00 00 40 08 55 55 55 55 55 55 55 55 ..u_..@ UUUUUUUU
ef 7a50 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
ef 7a60 55 55 55 55 55 55 55 55 00 00 00 00 00 00 00 00 UUUUUUWU........
ok

ok

ok tenp 4000 free-nmem

Device Registers

Device registers cannot be reliably accessed using the virtual memory access
operators discussed in the last section. There are special operators for accessing
device registers, and these operators require that the machine be properly set up
prior to their use. For a detailed explanation of this topic, see Writing FCode 3.x
Programs.

60 OpenBoot 3.x Command Reference Manual ¢ February 2000

Using Defining Words

The dictionary contains all the available Forth words. Forth defining words create new
Forth words.

Defining words require two stack diagrams. The first diagram shows the stack effect
when the new word is created. The second (or “Execution:”) diagram shows the
stack effect when that word is later executed.

TABLE 4-14 lists the defining words that you can use to create new Forth words.

If a Forth command is created with the same name as an existing command, the new
command will be created normally. Depending on the implementation, a warning
message "new nane isn’'t uni que" may be displayed. Previous uses of that
command name will be unaffected. Subsequent uses of that command name will use
the latest definition of that command name. (To correct the original definition such
that all uses of the command name get the corrected behavior, make the correction
with pat ch. (See “Using patch and (patch)”)

TABLE 4-14 Defining Words

Command Stack Diagram Description

: name (--) Begin creation of a colon definition.
(E: ... --7??)

; (--) End creation of a colon definition.

al i as new-name (--) Create new-name with the same behavior as old-name.

old-name (E: ... --2?2?)

buf fer: name (size --) Create a named data buffer. name returns a-addr.
(E: -- a-addr)

constant name (Xx--) Create a constant (for example, 3 const ant bar).
(E:--x)

2const ant (x1x2--) Create a 2-number constant.

name (E: - x1x2)

create name (--) Create a new command whose behavior will be set by
(E: -- a-addr) further commands.

$create

def er name

does>

(name-str name-len --)

Call cr eat e with the name specified by name-string.

(--) Create a command with alterable behavior. Alter with
(E: ... - 27?) to.

(...--...a-addr) Specify the run-time behavior of a cr eat ed word.

(E: ... -7??)

Chapter 61

TABLE 4-14 Defining Words (Continued)

Command Stack Diagram Description

fiel dname (offset size -- offset+size) Create a field offset pointer named name.
(E: addr -- addr+offset)

struct (--0) Start a struct ..fi el d definition.

val ue name (x--) Create a named variable. Change with t o.
(E:--x)

vari abl e name (--) Create a named variable. name returns a-addr.
(E: -- a-addr)

val ue lets you create a name for a numerical value that can be changed. Later
execution of that name leaves the assigned value on the stack. The following
example creates a word named f oo with an initial value of 22, and then calls f oo to
use its value in an arithmetic operation.

ok 22 value foo
ok foo 3 + .

25

ok

The value can be changed with the word t 0. For example:

ok 43 val ue thisval
ok thisval

43

ok 10 to thisval

ok thisval

10

ok

Words created with val ue are convenient, because you do not have to use @to
retrieve their values.

The defining word var i abl e creates a name with an associated one-cell memory
location. Later execution of that name leaves the address of the memory on the stack.
@and ! are used to read or write to that address. For example:

ok vari abl e bar

ok 33 bar !
ok bar @2 + .
35

ok

62 OpenBoot 3.x Command Reference Manual ¢ February 2000

The defining word def er creates a word whose behavior can be changed later, by
creating a slot which can be loaded with different behaviors at different times. For
example:

ok hex

ok defer printit

ok ['] .d to printit
ok ff printit

255
ok : nyprint (n--) ." 1t is " .h
] ." in hex " ;

ok ["] myprint to printit
ok ff printit

It is ff in hex

ok

Searching the Dictionary

The dictionary contains all the available Forth words. TABLE 4-15 lists some useful
tools you can use to search the dictionary. Please note that some of these tools work
only with methods or commands while others work with all types of words
(including, for example, variables and values).

TABLE 4-15 Dictionary Searching Commands

Command

Stack Diagram Description

' name

['] name

.calls

$find

find

(--xt) Find the named word in the dictionary. Returns the
execution token. Use outside definitions.

(--xt) Similar to ' but is used either inside or outside
definitions.

(xt--) Display a list of all commands which use the execution
token xt.

(str len -- xt true | str len false) Search for word named by str,len. If found, leave xt
and true on stack. If not found, leave name string and
false on stack.

(pstr -- xtn | pstr false) Search for word named by pstr. If found, leave xt and
true on stack. If not found, leave name string and false
on stack.

(We recommend using $f i nd to avoid using packed
strings.)

Chapter

TABLE 4-15 Dictionary Searching Commands (Continued)

Command Stack Diagram Description

see thisword (--) Decompile the specified word.

(see) (xt--) Decompile the word whose execution token is xt.

$sift (text-addr text-len --) Display all command names containing text-string.

sifting text (--) Display all command names containing text. text
contains no spaces.

wor ds (--) Display the names of words in the dictionary as

described below.

Before you can understand the operation of the dictionary searching tools, you need
to understand how words become visible. If there is an active package at the time a
word is defined, the new word becomes a method of the active package, and is
visible only when that package is the active package. The commands dev and
find-devi ce can be used to select or change the active package. The command
devi ce- end deselects the currently active package leaving no active package.

If there is no active package at the time a word is defined, the word is globally visible
(i.e. not specific to a particular package and always available).

The dictionary searching commands first search through the words of the active
package, if there is one, and then through the globally visible words.

Note — The Forth commands onl y and al so will affect which words are visible.

. cal | s can be used to locate all of the Forth commands that use a specified word in
their definition. . cal | s takes an execution token from the stack and searches the
entire dictionary to produce a listing of the names and addresses of every Forth
command which uses that execution token. For example:

ok ' input .calls
Called frominput at 1e248d8
Called fromio at le24acO
Called frominstall-console at 133598
Called frominstall-console at 1e33678
ok

see, used in the form:

see thisword

64 OpenBoot 3.x Command Reference Manual ¢ February 2000

displays a “pretty-printed” listing of the source for thisword (without the comments,
of course). For example:

ok see see

. see
"['] (see) catch if
drop
t hen

ok

For more details on the use of see, refer to “Using the Forth Language Decompiler
on page 93.

si fti ng takes a string from the input stream and searches vocabularies in the
dictionary search order to find every command name that contains the specified
string as shown in the following screen.

ok sifting input

In vocabul ary options
(1e333f 8) input-device

In vocabul ary forth
(1e2476c¢) input(1e0a9b4) set-input(1e0a978) restore-input
(1e0a940) save-input(1le0a7f0) nore-input?(1e086cc) input-file
ok

wor ds displays all the visible word names in the dictionary, starting with the most
recent definition. If a node is currently selected (as with dev), the list produced by
wor ds is limited to the words in that selected node.

Chapter 65

Compiling Data Into the Dictionary

The commands listed in TABLE 4-16 control the compilation of data into the

dictionary.
TABLE 4-16 Dictionary Compilation Commands

Command Stack Diagram Description

, (n-) Place a number in the dictionary.

c, (byte --) Place a byte in the dictionary.

w, (word --) Place a 16-bit number in the dictionary.

I, (quad --) Place a 32-bit number in the dictionary.

[(--) Begin interpreting.

] (-) End interpreting, resume compilation.

al | ot (n-) Allocate n bytes in the dictionary.

>body (xt -- a-addr) Find the data field address from the execution token.

body> (a-addr -- xt) Find the execution token from the data field address.

conpil e (--) Compile the next word at run time. (Recommend using
post pone instead.)

[compile] nane (--) Compile the next (immediate) word. (Recommend using
post pone instead.)

here (--addr) Address of top of dictionary.

i medi ate (--) Mark the last definition as immediate.

to name (n--) Install a new action in a def er word or val ue.

literal (n-) Compile a number.

origin (--addr) Return the address of the start of the Forth system.

pat ch new-word old-word ~ (--) Replace old-word with new-word in word-to-patch.

word-to-patch

(pat ch)

post pone name

(new-n old-n xt --)

(--)

Replace old-n with new-n in word indicated
by xt.

Delay the execution of the word name.

66 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-16 Dictionary Compilation Commands (Continued)

Command Stack Diagram Description
recurse (...--2??) Compile a recursive call to the word being compiled.
recursive (--) Make the name of the colon definition being compiled
visible in the dictionary, and thus allow the name of the
word to be used recursively in its own definition.
state (--addr) Variable that is non-zero in compile state.
The dictionary compilation commands listed in TABLE 4-17 are available only on 64-
bit OpenBoot implementations.
TABLE 4-17 64-Bit Dictionary Compilation Commands
Command Stack Diagram Description
X, (o--) Compile an octlet, o, into the dictionary (doublet-aligned).
Displaying Numbers
Basic commands to display stack values are shown in TABLE 4-18.
TABLE 4-18 Basic Number Display
Command Stack Diagram Description
(n-) Display a number in the current base.
T (nsize --) Display a number in a fixed width field.
.S (--) Display contents of data stack.
showst ack (??7?--27?) Execute . s automatically before each ok prompt.
noshowst ack (2?72 --77?) Turn off automatic display of the stack before each ok prompt
u. (u--) Display an unsigned number.
u.r (usize--) Display an unsigned number in a fixed width field.

The . s command displays the entire stack contents without disturbing them. It can
usually be used safely for debugging purposes. (This is the function that showst ack

performs automatically.)

Chapter

67

Changing the Number Base

You can print numbers in a specific number base or change the operating number
base using the commands in TABLE 4-19.

TABLE 4-19 Changing the Number Base

Command Stack Diagram Description

.d (n-) Display n in decimal without changing base.
.h (n-) Display n in hex without changing base.

base (--addr) Variable containing number base.

deci nal (--) Set the number base to 10.

d# number (--n) Interpret number in decimal; base is unchanged.
hex (--) Set the number base to 16

h# number (--n) Interpret number in hex; base is unchanged.

The d# and h# commands are useful when you want to input a number in a specific
base without explicitly changing the current base. For example:

ok deci nal (Changes base to decinal)
ok 4 h# ff 17 2
4 255 17 2 ok

The . d and . h commands act like “. ” but display the value in decimal or
hexadecimal, respectively, regardless of the current base setting. For example:

ok hex
ok ff . ff .d
ff 255

Controlling Text Input and Output

This section describes text and character input and output commands.

68 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-20 lists commands to control text input.

TABLE 4-20 Controlling Text Input

Command Stack Diagram Description

(ccc) (--) Create a comment. Conventionally used for stack diagrams.

\" rest-of-line (--) Treat the rest of the line as a comment.

ascii ccc (--char) Get numerical value of first ASCII character of next word.

accept (addr lenl -- len2) Get a line of edited input from the console input device; store at
addr. lenl is the maximum allowed length. len2 is the actual
length received.

expect (addr len --) Get and display a line of input from the console; store at addr.
(Recommend using accept instead.)

key (-- char) Read a character from the console input device.

key? (--flag) True if a key has been typed on the console input device.

par se (char -- str len) Parse text from the input buffer delimited by char.

par se-wor d (--strlen) Skip leading spaces and parse text from the input buffer
delimited by white space.

wor d (char -- pstr) Collect a string delimited by char from the input buffer and

place it as a packed string in memory at pstr. (Recommend
using par se instead.)

Comments are used with Forth source code (generally in a text file) to describe the
function of the code. The ((open parenthesis) is the Forth word that begins a
comment. Any character up to the closing parenthesis) is ignored by the Forth
interpreter. Stack diagrams are one example of comments using (.

Note — Remember to follow the (with a space, so that it is recognized as
a Forth word.

\ (backslash) indicates a comment terminated by the end of the line of text.

key waits for a key to be pressed, then returns the ASCII value of that key on the
stack.

asci i, used in the form asci i x, returns on the stack the numerical code of the
character x.

key? looks at the keyboard to see whether the user has recently typed any key. It
returns a flag on the stack: t r ue if a key has been pressed and f al se otherwise. See
“Conditional Flags” on page 76 for a discussion on the use of flags.

Chapter 69

TABLE 4-21 lists general-purpose text display commands.

TABLE 4-21 Displaying Text Output
Command Stack Diagram Description
. " cec” (--) Compile a string for later display.
(cr (--) Move the output cursor back to the beginning of the current line.
cr (--) Terminate a line on the display and go to the next line.
emt (char--) Display the character.
exit? (--flag) Enable the scrolling control prompt: More [<space>, <cr>,q] ?
The return flag is t r ue if the user wants the output to be terminated.
space (--) Display a space character.
spaces (+n--) Display +n spaces.
type (addr +n --) Display the +n characters beginning at addr.

cr sends a carriage-return/linefeed sequence to the console output device. For

example:

ok 3 .
3 44
5
ok

cr 5.

em t displays the letter whose ASCII value is on the stack.

Ba
ok

ok ascii
61 ok 42
61 42 ok emt emt

70 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-22 shows commands used to manipulate text strings.

TABLE 4-22 Manipulating Text Strings

Command Stack Diagram Description

', (addr len --) Compile an array of bytes from addr
of length len, at the top of the
dictionary as a packed string.

" cec” (--addrlen) Collect an input stream string,
either interpreted or compiled.

M eec” Display the string ccc .

. (cce) (--) Display the string ccc immediately.

-trailing (addr +nl -- addr +n2) Remove trailing spaces.

bl (--char) ASCII code for the space character;
decimal 32.

count (pstr -- addr +n) Unpack a packed string.

lcc (char -- lowercase-char) Convert a character to lowercase.

| eft-parse-string (addr len char -- addrR lenR addrL lenL) Split a string at char (which is
discarded).

pack (‘addr len pstr -- pstr) Store the string addr,len as a packed
string at pstr.

upc (char -- uppercase-char) Convert a character to uppercase.

Some string commands specify an address (the location in memory where the
characters reside) and a length (the number of characters in the string). Other
commands use a packed string or pst r, which is a location in memory containing a
byte for the length, immediately followed by the characters. The stack diagram for
the command indicates which form is used. For example, count converts a packed
string to an address-length string.

The command . " is used in the form: . " string". It outputs text immediately when
it is encountered by the interpreter. A" (double quotation mark) marks the end of
the text string. For example:

ok : testing 34 . This is a test" 55 . ;

ok

ok testing

34 This is a test55
ok

Chapter 71

When " is used outside a colon definition, only two interpreted strings of up to 80
characters each can be assembled concurrently. This limitation does not apply in
colon definitions.

Redirecting Input and Output

Normally, OpenBoot uses a keyboard for command input, and a frame buffer with a
connected display screen for display output. (Server systems may use an ASCII
terminal connected to a serial port. For more information on how to connect a
terminal to your system, see your system’s installation manual.) You can redirect the
input, the output, or both, to a serial port. This may be useful, for example, when
debugging a frame buffer.

TABLE 4-23 lists commands you can use to redirect input and output.

TABLE 4-23 1/0 Redirection Commands

Command Stack Diagram Description

i nput (device --) Select device, for example t t ya, keyboar d, or device-specifier, for
subsequent input.

io (device --) Select device for subsequent input and output.

out put (device --) Select device, for example t t ya, keyboar d, or device-specifier, for

subsequent output.

The commands i nput and out put temporarily change the current devices for input
and output. The change takes place as soon as you enter a command; you do not
have to reset your system. A system reset or power cycle causes the input and
output devices to revert to the default settings specified in the NVRAM
configuration variables i nput - devi ce and out put - devi ce. These variables can
be modified, if needed (see Chapter 3 “Setting Configuration Variables”).

i nput must be preceded by one of the following: keyboard, ttya, ttyb, or
device-specifier text string. For example, if input is currently accepted from the
keyboard, and you want to make a change so that input is accepted from a terminal
connected to the serial port ttya, type:

ok ttya input
ok

72 OpenBoot 3.x Command Reference Manual ¢ February 2000

At this point, the keyboard becomes nonfunctional (except perhaps for St op- A), but
any text entered from the terminal connected to t t ya is processed as input. All
commands are executed as usual.

To resume using the keyboard as the input device, use the terminal keyboard to type:

ok keyboard i nput
ok

Similarly, out put must be preceded by one of the following: screen,ttya,orttyb
or device-specifier. For example, if you want to send output to a serial port instead of
the normal display screen, type:

ok ttya output
ok

The screen does not show the answering ok prompt, but the terminal connected to
the serial port shows the ok prompt and all further output as well.

i 0 is used in the same way, except that it changes both the input and output to the
specified place. For example:

ok ttya io
ok

Generally, the argument to i nput, out put, and i o is a device-specifier, which can be
either a device path name or a device alias. The device must be specified as a Forth
string, using double quotation marks ("), as shown in the two examples below:

ok " /sbus/cgsix" output

or:

ok " screen" output

In the preceding examples, keyboar d, screen, ttya, and tt yb are predefined
Forth words that put their corresponding device alias string on the stack.

Chapter 73

Command Line Editor

OpenBoot implements a command line editor (similar to EMACS, a common text
editor), some optional extensions and an optional history mechanism for the User
Interface. You use these tools to re-execute previous commands without retyping
them, to edit the current command line to fix typing errors, or to recall and change
previous commands.

TABLE 4-24 lists line-editing commands available at the ok prompt.

TABLE 4-24 Required Command Line Editor Keystroke Commands

Keystroke Description

Return (Enter) Finishes editing of the line and submits the entire visible line to the interpreter regardless
of the current cursor position.

Control-B Moves backward one character.

Escape B Moves backward one word.

Control-F Moves forward one character.

Escape F Moves forward one word.

Control-A Moves backward to beginning of line.

Control-E Moves forward to end of line.

Delete Erases previous character.

Backspace Erases previous character.

Control-H Erases previous character.

Escape H Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Control-W Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Control-D Erases next character.

Escape D Erases from cursor to end of the word, storing erased characters in a save buffer.

Control-K Erases from cursor to end of line, storing erased characters in a save buffer.

Control-U Erases entire line, storing erased characters in a save buffer.

Control-R Retypes the line.

Control-Q Quotes next character (allows you to insert control characters).

Control-Y Inserts the contents of the save buffer before the cursor.

74 OpenBoot 3.x Command Reference Manual ¢ February 2000

The command line history extension saves previously-typed commands in an
EMACS-like command history ring that contains at least 8 entries. Commands may
be recalled by moving either forward or backward around the ring. Once recalled, a
command may be edited and/or resubmitted (by typing the Return key). The
command line history extension keys are;

TABLE 4-25 Command Line History Keystroke Commands

Keystroke Description
Control-P Selects and displays the previous command in the command history ring.
Control-N Selects and displays the next command in the command history ring.
Control-L Displays the entire command history ring.
The command completion extension enables the system to complete long Forth word
names by searching the dictionary for one or more matches based on the already-
typed portion of a word. When you type a portion of a word followed by the
command completion keystroke, Control-Space, the system behaves as follows:
= If the system finds exactly one matching word, the remainder of the word is
automatically displayed.
= If the system finds several possible matches, the system displays all of the
characters that are common to all of the possibilities.
= If the system cannot find a match for the already-typed characters, the system
deletes characters from the right until there is at least one match for the remaining
characters.
= The system beeps if it cannot determine an unambiguous match.
The command completion extension keys are:
TABLE 4-26 Command Completion Keystroke Commands
Keystroke Description

Control-Space
Control-?

Control-/

Complete the name of the current word.
Display all possible matches for the current word.

Display all possible matches for the current word.

Chapter 75

Conditional Flags

Forth conditionals use flags to indicate true/false values. A flag can be generated in
several ways, based on testing criteria. The flag can then be displayed from the stack
with the word “.”, or it can be used as input to a conditional control command.
Control commands can cause one behavior if a flag is true and another behavior if

the flag is false. Thus, execution can be altered based on the result of a test.

A 0 value indicates that the flag value is f al se. A - 1 or any other nonzero number
indicates that the flag value is t r ue.

TABLE 4-27 lists commands that perform relational tests, and leave atrue or f al se
flag result on the stack.

TABLE 4-27 Comparison Commands

Command Stack Diagram Description

< (nln2--flag) True if n1 < n2.

<= (nln2--flag) True if n1 <= n2.

<> (nln2--flag) True if n1 is not equal to n2.
= (n1n2--flag) True if n1 = n2.

> (nln2--flag) True if n1 > n2.

>= (n1n2--flag) True if n1 >=n2.

0< (n--flag) True if n < 0.

O<= (n--flag) True if n <= 0.

0<> (n--flag) True if n <> 0.

0= (n--flag) True if n = 0 (also inverts any flag).
0> (n--flag) True if n > 0.

0>= (n--flag) True if n >=0.

bet ween (n min max -- flag) True if min <= n <= max.

fal se (--0) The value FALSE, which is 0.
true (---1) The value TRUE, which is -1.
u< (ulu2--flag) True if ul < u2, unsigned.
u<= (ulu2--flag) True if ul <= u2, unsigned.

76 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-27 Comparison Commands (Continued)

Command Stack Diagram Description
u> (ulu2--flag) True if ul > u2, unsigned.
u>= (ulu2--flag) True if ul >= u2, unsigned.
within (n min max -- flag) True if min <= n < max.
> takes two numbers from the stack, and returns t r ue (- 1) on the stack if the first
number was greater than the second number, or returns f al se (0) otherwise. An
example follows:
ok 36 >.
0 (3 is not greater than 6)
ok
0= takes one item from the stack, and returns t r ue if that item was 0 or returns
f al se otherwise. This word inverts any flag to its opposite value.
The following sections describe words used in a Forth program to control the flow of
execution.
The i f - el se-t hen Structure
The commands i f, el se and t hen provide a simple control structure.
The commands listed in TABLE 4-28 control the flow of conditional execution.
TABLE 4-28 i f ..el se..t hen Commands
Command Stack Diagram Description
if (flag --) Execute the following code when flag is t r ue.
el se (--) Execute the following code when flag is f al se.
t hen (--) Terminate i f ..el se..t hen.

Chapter 77

The format for using these commands is:

flag if

(do this if true)
t hen
(continue normally)

or

flag if

(do this if true)
el se

(do this if false)
t hen
(continue normally)

The i f command consumes a flag from the stack. If the flag is t r ue (nonzero), the
commands following the i f are performed. Otherwise, the commands (if any)
following the el se are performed.

ok : testit (n--)
] 5> if ." good enough "
] else ." too small "
] then

] ." Done.

ok

ok 8 testit

good enough Done

ok 2 testit

too smal| Done

ok

Note — The] prompt reminds you that you are part way through creating a new
colon definition. It reverts to ok after you finish the definition with a semicolon.

The case Statement

A high-level case command is provided for selecting alternatives with multiple
possibilities. This command is easier to read than deeply-nested
i f..then commands.

78 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE 4-29 lists the conditional case commands.

TABLE 4-29 case Statement Commands

Command Stack Diagram Description

case (selector -- selector) Begin a case..endcase conditional.

endcase (selector --) Terminate a case..endcase conditional.

endof (--) Terminate an of ..endof clause in a
case...endcase

of (selector test-value -- selector | {empty} Begin an of ..endof clause in a case

) conditional.

Here is a simple example of a case command:

ok : testit (testvalue --)

] case

] 0 of ." It was zero " endof

] 1 of ." It was one " endof

] ff of ." Correct " endof

] -2 of ." It was mnus-two "endof

] (default) ." It was this value: " dup .
] endcase ." Al done." ;

ok

ok 1 testit

It was one Al done.

ok ff testit

Correct All done.

ok 4 testit

It was this value: 4 Al done.
ok

Note — The (optional) def aul t clause can use the test value which is still on the
stack, but should not remove it (use the phrase “dup . ” instead of “.). A
successful of clause automatically removes the test value from the stack.

The begi n Loop

A begi n loop executes the same commands repeatedly until a certain condition is

satisfied. Such a loop is also called a conditional loop.

Chapter

79

TABLE 4-30 lists commands to control the execution of conditional loops.

TABLE 4-30 begi n (Conditional) Loop Commands

Command Stack Diagram Description
agai n (--) End a begi n..agai n infinite loop.
begin (--) Begin a begi n..whi | e..r epeat, begi n..until, or begi n..agai n loop.
r epeat (--) End a begi n..whi | e..c epeat loop.
until (flag --) Continue executing a begi n..unti | loop until flag is true.
while (flag --) Continue executing a begi n..whi | e..c epeat loop while
flag is true.

There are two general forms:

begi n any commands...flag unti |

and

begi n any commands...flagwhi | e
more commands r epeat

In both cases, the commands in the loop are executed repeatedly until the proper
flag value causes the loop to be terminated. Then execution continues normally with
the command following the closing command word (unti | or r epeat).

In the begi n..unti | case, until removes a flag from the top of the stack and
inspects it. If the flag is f al se, execution continues just after the begi n, and the
loop repeats. If the flag is t r ue, the loop is exited.

In the begi n..whi | e..r epeat case, whi | e removes a flag from the top of the stack
and inspects it. If the flag is t r ue, the loop continues by executing the commands
just after the whi | e. The r epeat command automatically sends control back to
begi n to continue the loop. If the flag is f al se when whi | e is encountered, the
loop is exited immediately; control goes to the first command after the closing
repeat .

An easy mnemonic for either of these loops is: If true, fall through.

80 OpenBoot 3.x Command Reference Manual ¢ February 2000

A simple example follows.

ok begin 4000 c@. key? until (repeat until any key is pressed)
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
ok

The loop starts by fetching a byte from location 4000 and displaying the value. Then,
the key? command is called, which leaves a t r ue on the stack if the user has
pressed any key, and f al se otherwise. This flag is consumed by unti | and, if the
value is f al se, then the loop continues. Once a key is pressed, the next call to key?
returns t r ue, and the loop terminates.

Unlike many versions of Forth, the User Interface allows the interactive use of loops
and conditionals — that is, without first creating a definition.

The do Loop

A do loop (also called a counted loop) is used when the number of iterations of the
loop can be calculated in advance. A do loop normally exits just bef or e the
specified ending value is reached.

TABLE 4-31 lists commands to control the execution of counted loops.

TABLE 4-31 do (Counted) Loop Commands

Command Stack Diagram Description

+l oop (n-) End a do..+l oop construct; add n to loop index and return to do (ifn <0,
index goes from start to end inclusive).

?do (‘end start --) Begin ?do..l oop to be executed 0 or more times. Index goes from start to
end-1 inclusive. If end = start, loop is not executed.

?l eave (flag --) Exit from a do..l oop if flag is non-zero.

do (‘end start --) Begin a do..l oop. Index goes from start to end-1 inclusive.
Example: 10 O do i . loop (printsO12..def).

i (-n) Leaves the loop index on the stack.

i (-n) Leaves the loop index of the next outer enclosing loop on the stack.

| eave (--) Exit from do..l oop.

| oop (--) End of do..l oop.

Chapter 81

The following screen shows several examples of how loops are used.

ok 10 5 doi . loop

56789abcdef

ok

ok 2000 1000 doi . i c@. cr i c@ff =if leave then 4 +loop

1000 23

1004 0

1008 fe

100c O

1010 78

1014 ff

ok : scan (byte --)

] 6000 5000 (Scan memory 5000 - 6000 for bytes not equal to the specified byte)
do dup i c@<> (byte error?)

] if i . then (byte)

] | oop

] drop (the original byte was still on the stack, discard it)

|
ok 55 scan
5005 5224 5f99

ok 6000 5000 do i i c! loop (Fill a region of memory with a stepped pattern)

ok

ok 500 val ue testloc

ok : testl6 (--) 1.0000 O (do O-ffff) (Write different 16-bit values to a location)

] do i testloc w testloc w@i <> (error?) ('Also check the location)
if ." Error - wote " i . ." read " testloc w@. cr

| leave (exit after first error found) (This line is optional)

] t hen

] | oop

1

ok test16

ok 6000 to testloc

ok test16

Error - wote 200 read 300

ok

82 OpenBoot 3.x Command Reference Manual ¢ February 2000

Additional Control Commands

TABLE 4-32 contains descriptions of additional program execution control commands.

TABLE 4-32 Program Execution Control Commands

Command Stack Diagram Description

abort (--) Abort current execution and interpret keyboard commands.
abort " ccc" (abort? --) If abort? is true, abort and display message.

eval (addr len --) Interpret Forth source from addr len.

execute (xt--) Execute the word whose execution token is on the stack.

exit (--) Return from the current word. (Cannot be used in counted loops.)
qui t (--) Same as abort, but leave stack intact.

abort causes immediate termination and returns control to the keyboard. abort " is
similar to abort but is different in two respects. abort" removes a flag from the
stack and only aborts if the flag is t r ue. Also, abort" prints any desired message
when the abort takes place.

eval takes a string from the stack (specified as an address and a length). The
characters in that string are then interpreted as if they were entered from the
keyboard. If a Forth text file has been loaded into memory (see Chapter 5 “Loading
and Executing Programs”), then eval can be used to compile the definitions
contained in the file.

Chapter 83

84 OpenBoot 3.x Command Reference Manual ¢ February 2000

CHAPTER 5

Loading and Executing Programs

The User Interface provides several methods for loading and executing a program
on the machine. These methods load a file into memory from Ethernet, a hard disk,
a floppy disk, or a serial port, and support the execution of Forth, FCode and binary
executable programs.

Most of these methods require the file to have a Client program header; see IEEE
1275.1-1994 Standard for Boot (Initialization Configuration) Firmware for a
description. This header is similar to the a. out header used by many UNIX
systems. Sun’s FCode tokenizer generates files with the Client program header.

OpenBoot commands for loading files from various sources are listed in TABLE 5-1.

TABLE5-1 File Loading Commands and Extensions

Command Stack Diagram Description

boot [device-specifier] (--) Depending on the values of various configuration

[arguments] variables and the optional arguments, determine the file
and device to be used. Reset the machine, load the
identified program from the identified device, and execute
the program.

byt e- | oad (addr xt --) Interpret FCode beginning at addr. If xt is 1 (the usual
case), use r b@to read the FCode. Otherwise, use the access
routine whose execution token is xt.

dl (--) Load a Forth source text file over a serial line until
Control-D is detected and then interpret. Using ti p as an
example, type:
~C cat filename
Control -D

dl bin (--) Load a binary file over a serial line. Using ti p as an

dl oad filename

example, type:
~C cat filename

(addr --) Load the specified file over Ethernet at the given address.

85

TABLES5-1 File Loading Commands and Extensions (Continued)

Command Stack Diagram Description

eval (...strlen--??7?) Synonym for eval uat e.

eval uat e (...strlen--??7?) Interpret Forth source text from the specified string.

go (--) Begin executing a previously-loaded binary program, or
resume executing an interrupted program.

i nit-program (--) Prepare machine to execute a binary file.

| oad [device-specifier] (--) Depending on the values of various configuration

[arguments]

| oad- base

?go

variables and the optional arguments, determine the file
and device to be used, and load the identified program
from the identified device.

(--addr) Address at which | oad places the data it reads from a
device.
(--) Execute Forth, FCode or binary programs.

Using boot

Although boot is normally used to boot the operating system, it can be used to load
and execute any client program. Although booting usually happens automatically,
the user can also initiate booting from the User Interface.

The boot process is as follows:

The machine may be reset if a client program has been executed since the last
reset. (The execution of a reset is implementation dependent.)

A device is selected by parsing the boot command line to determine the boot
device and the boot arguments to use. Depending on the form of the boot
command, the boot device and/or argument values may be obtained from
configuration variables.

The boot pat h and boot ar gs properties in the / chosen node of the device tree
are set with the selected values.

The selected program is loaded into memory using a protocol that depends on the
type of the selected device. For example, a disk boot might read a fixed number of
blocks from the beginning of the disk, while a tape boot might read a particular
tape file.

The loaded program is executed. The behavior of the program may be further
controlled by the argument string (if any) that was either contained within the
selected configuration variable or was passed to the boot command on the
command line.

86 OpenBoot 3.x Command Reference Manual ¢ February 2000

boot has the following general format:

boot [device-specifier] [arguments]

where device-specifier and arguments are optional. For a complete discussion of the
use of the boot command, see “Booting for the Expert User” on page 15.

Using dl to Load Forth Text Files Over
Serial Port A

Forth programs loaded with dI must be ASCII files.

To load a file over the serial line, connect the test system's serial port A to a machine
that is able to transfer a file on request (in other words, a server). Start a terminal
emulator on the server, and use that terminal emulator to download the file using
dl .

The following example assumes the use of the Solaris terminal emulator ti p. (See
Appendix A “Setting Up a TIP Connection””, for information on this procedure.)

. At the ok prompt of the test system, type:

ok dl

. In the ti p window of the server, type:
~C
to obtain a command line with which to issue a Solaris command on the server.

Note — The C is case-sensitive and must be capitalized.

Note —ti p will only recognize the ~asati p command if it is the first character on
the command line. If ti p fails to recognize the ~C, type Enter in the t i p window
and repeat ~C.

Chapter 87

3. Atthe | ocal conmand prompt, use cat to send the file.

~C (local comand) cat filenane
(Away two seconds)
Control -D

4, When ti p displays a message of the form (Away n seconds), type:

Control -D
in the ti p window to signal dl that the end of the file has been reached.

dl then automatically interprets the file, and the ok prompt reappears on the screen
of the test system.

88

Using | oad

The syntax and behavior of | oad are similar to boot except that the program is only
loaded and not executed. | oad also does not do a machine reset prior to loading as
may.boot

The general form of the | oad command is:

| oad [device-specifier] [arguments]

The parsing of the | oad command’s parameters is affected by the same
configuration variables as boot , and | oad’s device-specifier and arguments are
identified by the same process. (See “Booting for the Expert User” on page 15 for the
details.)

Once the device-specifier and arguments are identified, loading proceeds as follows:

1. The device-specifier and arguments are saved in the boot pat h and boot ar gs
properties, respectively, of the / chosen node.

2. If the device-specifier was obtained from a configuration variable, its value may be
a list of devices. If the list contains only a single entry, that entry is used by | oad
as the device-specifier.

OpenBoot 3.x Command Reference Manual ¢ February 2000

Note — If the list contains more than one entry, an attempt is made to open each
listed device, beginning with the first entry, and continuing until the next to last
entry. If the system successfully opens a device, that device is closed and is used by
| oad as the device-specifier. If none of these devices can be opened, the last device in
the list is used by | oad as the device-specifier.

3. | oad attempts to open the device specified by device-specifier. If the device cannot
be opened, loading is terminated.

4. If the device is successfully opened, the device’s | oad method is invoked to load
the specified program from the specified device at the system’s default load
address.

5. If | oad is successful, and if the beginning of the loaded image is a valid client
program header for the system:

a. Memory is allocated at the address and of the size specified in that header.

b. The loaded image is moved from the default load address to the newly
allocated memory.

c. The system is initialized such that a subsequent go command will begin the
execution of the loaded program.

Using dl bi n to Load FCode or Binary
Executables Over Serial Port A

FCode or binary programs loaded with dl bi n must be C i ent program header
files. dl bi n loads the files at the entry point indicated in the Cl i ent program
header. Link binary files for 4000 (hex). Recent versions of the FCode Tokenizer
create a Cl i ent program header file with entry point 4000.

To load a file over the serial line, connect the test system's serial port A to a machine
that is able to transfer a file on request (i.e. a server). Start a terminal emulator on the
server, and use that terminal emulator to download the file using dl bi n.

The following example assumes the use of the Solaris terminal emulator ti p. (See
Appendix A “Setting Up a TIP Connection””, for information on this procedure.)

1. At the test system’s ok prompt, type:

ok dl bin

Chapter 89

In the ti p window of the server, type:

~C

to obtain a command line with which to issue a Solaris command on the server.

Note — The Cis case-sensitive and must be capitalized.

Note —ti p will only recognize the ~as ati p command if it is the first character on
the command line. If ti p fails to recognize the ~C, press Return in the t i p window
and repeat ~C agai n.

1. At the “local command” prompt, use cat to send the file.

~C (l ocal command) cat filenane
(Away two seconds)

When ti p completes the download, it displays a message of the form (Away n
seconds), and the ok prompt reappears on the screen of the test system.

To execute an FCode program, type:

ok 4000 1 byte-Ioad

To execute the downloaded program, type:

ok go

Using dl oad to Load From Ethernet

dl oad loads files over Ethernet at a specified address, as shown below.

ok 4000 dl oad fil enane

90 OpenBoot 3.x Command Reference Manual ¢ February 2000

In the above example, filename must be relative to the server's root. Use 4000 (hex) as
the address for dl oad input. dl oad uses the trivial file transfer protocol (TFTP), so
the server may need to have its permissions adjusted for this to work.

Forth Programs

Forth programs loaded with dl oad must be ASCII files beginning with the two
characters “\ ” (backslash and space). To execute the loaded Forth program, type:

ok 4000 file-size @eval

In the above example, file-size contains the size of the loaded image.

FCode Programs

FCode programs loaded with dl oad must be C i ent program header files. To
execute the loaded FCode program, type:

ok 4000 1 byte-Ioad

byt e- | oad is used by OpenBoot to interpret FCode programs on expansion boards
such as SBus. The 1 in the example is a specific value of a parameter that specifies
the separation between FCode bytes in the general case. Since dl oad loads into
system memory, 1 is the correct spacing.

Binary Executables

dl oad requires binary programs to be in Client program header. Executable binary
programs loaded must be either linked to dl oad's input address (e.g., 4000) or be
position independent. To execute the binary program, type:

ok go

To run the program again, type:

ok init-program go

Chapter 91

dl oad does not use intermediate booters (unlike the boot command). Thus, any
symbol information included in the Cl i ent program header file is available to
the User Interface's symbolic debugging capability. (See Chapter 6 “Debugging” for
more information on symbolic debugging.)

Using ?go
Once a program has been loaded into the system, ?go can be used to execute that

program regardless of the type of the program.

?go examines the start of the loaded image. If the image begins with the string “\ “
(backslash and space), the image is assumed to be Forth text. The Forth interpreter is
invoked to interpret the image.

92 OpenBoot 3.x Command Reference Manual ¢ February 2000

CHAPTER 6

Debugging

OpenBoot provides debugging tools that include a Forth language decompiler, a
machine language disassembler, register display commands, a symbolic debugger,
breakpoint commands, a Forth source-level debugger, a high-level language
patching facility, and exception tracing. This chapter describes the capabilities
specified by IEEE Standard 1275-1994.

Using the Forth Language Decompiler

The built-in Forth language decompiler can be used to recreate the source code for
any previously-defined Forth word. The command:

ok see ol d-nane

displays a listing of the source for ol d- nane (without the source comments, of
course).

A companion to see is (see) which is used to decompile the Forth word whose
execution token is taken from the stack. For example:

ok ' ol d-nanme (see)

(see) produces a listing in a format identical to see.

93

ok see see
see
" ['] (see) catch if
drop
t hen

ok see (see)
defer (see) is
(f0018a44)

40 rmargin ! dup dup (f00189c4) dup (f0018944) (f0018980) (f0018658)
??cr

ok f0018a44 (see)
(f0018a44)

40 rmargin ! dup dup (f00189c4) dup (f0018944) (f0018980) (f0018658)
??cr

The preceding listing shows that:

= see itself is composed only of Forth source words that were compiled as
ext ernal or as header s with f code- debug? set to true.

= (see) is adefer word. (see) also contains words that were compiled as
header | ess and are, consequently, displayed as hex addresses surrounded by
parentheses.

= Decompiling a word with(see) produces a listing identical to that produced by
see.

For words implemented in Forth assembler language, see displays a Forth
assembler listing. For example, decompiling dup displays:

ok see dup

code dup

f0008c98 sub %97, 8, %97

f 0008c9c st x %4, [Yg0 + 9%g7]
f 0008cal Id [%@5], %0

f 0008ca4 jmp %0, %92, %0

f 0008ca8 add %5, 4, %5

94 OpenBoot 3.x Command Reference Manual ¢ February 2000

Using the Disassembler

The built-in disassembler translates the contents of memory into equivalent
assembly language.

TABLE 6-1 lists commands that disassemble memory into equivalent opcodes.

TABLE 6-1 Disassembler Commands

Command Stack Diagram Description
+di s (--) Continue disassembling where the last disassembly left off.
dis (addr --) Begin disassembling at the specified address.

di s begins to disassemble the data content of any desired location. The system
pauses when:

= Any key is pressed while disassembly is taking place.

= The disassembler output fills the display screen.

= Acall orjunp opcode is encountered.

Disassembly can then be stopped or the +di s command can be used to continue
disassembling at the location where the last disassembly stopped.

Memory addresses are normally shown in hexadecimal. However, if a symbol table
is present, memory addresses are displayed symbolically whenever possible.

Displaying Registers

You can enter the User Interface from the middle of an executing program as a result
of a program crash, a user abort, or an encountered breakpoint. (Breakpoints are
discussed in “Breakpoints” on page 97.) In all these cases, the User Interface
automatically saves all the CPU data register values in a buffer area. These values
can then be inspected or altered for debugging purposes.

Chapter 95

SPARC Registers

TABLE 6-2 lists the SPARC register commands.

TABLE6-2 SPARC Register Commands

Command

Stack Diagram

Description

%90 through %g7
% O through % 7
% 0 through % 7
%00 through %7
%c Ympc %
% 0 through % 31
.fregisters
.locals
.registers

. Wi ndow
ctrace

set-pc

to regname

-- value)
-- value)
-- value)

-- value)

-- value)
-)
-)
-)
(windowt# --)
()

(new-value --)

(
(
(
(
(-- value)
(
(
(
(

(new-value --)

(windowt# --)

Return the value in the specified global register.
Return the value in the specified input register.
Return the value in the specified local register.

Return the value in the specified output register.
Return the value in the specified register.

Return the value in the specified floating point register.
Display the values in % 0 through % 31.

Display the values in the i, | and o registers.
Display values in processor registers.

Same as w. | ocal s; display the desired window.
Display the return stack showing C subroutines.

Set %pc to new-value, and set ¥%mpc to (new-value+4).

Change the value stored in any of the above registers.
Use in the form: new-value t o regname.

Set the current window for displaying % x, % X, or %©x.

96 OpenBoot 3.x Command Reference Manual ¢ February 2000

TABLE6-3 SPARC V9 Register Commands

Command Stack Diagram Description

% prs (-- value) Return the value in the specified register.
Yasi

Ypst at e

%1 -c

%pi |

Y% state

% t

% ba

YewWp
%cansave
%anrestore
%ot herwi n
%St at e

%! eanwi n

.pstate (--) Formatted display of the processor state
register.

.ver (--) Formatted display of the version register.
. ccr (--) Formatted display of the % cr register.

.trap-registers (--) Display trap-related registers.

The values of all of these registers are saved and can be altered with t 0. After the
values have been inspected and/or modified, program execution can be continued
with the go command. The saved (and possibly modified) register values are copied
back into the CPU, and execution resumes at the location specified by the saved
program counter.

If you change %pc with t o, you should also change %pc. (It is easier to use set - pc,
which changes both registers automatically.)

On SPARC V9 systemes, if Nis the current window, N-1 specifies the window for the
caller, N-2 specifies the callers’s caller, etc.

Breakpoints

The User Interface provides a breakpoint capability to assist in the development and
debugging of stand-alone programs. (Programs that run over the operating system

generally do not use this OpenBoot feature, but use other debuggers designed to run
with the operating system.) The breakpoint feature lets you stop the program under

Chapter 97

test at desired points. After program execution has stopped, registers or memory can
be inspected or changed, and new breakpoints can be set or cleared. You can resume
program execution with the go command.

TABLE 6-4 lists the breakpoint commands that control and monitor program
execution.

TABLE 6-4 Breakpoint Commands

Command Stack Diagram Description

+bp (addr --) Add a breakpoint at the specified address.

-bp (addr --) Remove the breakpoint at the specified address.

--bp (--) Remove the most-recently-set breakpoint.

. bp (--) Display all currently set breakpoints.

. br eakpoi nt (--) Perform a specified action when a breakpoint occurs. This word can be
altered to perform any desired action. For example, to display registers
at every breakpoint, type:['] .registers to .breakpoint. The
default behavior is . i nstructi on. To perform multiple behaviors,
create a single definition which calls all desired behaviors, then load
that word into . br eakpoi nt .

.instruction (--) Display the address, opcode for the last-encountered breakpoint.

.step (--) Perform a specified action when a single step occurs (see
. br eakpoi nt).

bpof f (--) Remove all breakpoints.

finish-1oop (--) Execute until the end of this loop.

go (--) Continue from a breakpoint. This can be used to go to an arbitrary
address by setting up the processor’s program counter before issuing
go.

gos (n-) Execute go n times.

hop (--) (Like the st ep command.) Treat a subroutine call as a single
instruction.

hops (n-) Execute hop n times.

return (--) Execute until the end of this subroutine.

returnl (--) Execute until the end of this leaf subroutine.

ski p (--) Skip (do not execute) the current instruction.

step (--) Single-step one instruction.

st eps (n-) Execute st ep n times.

till (addr --) Execute until the given address is encountered. Equivalent to +bp go.

98 OpenBoot 3.x Command Reference Manual ¢ February 2000

To debug a program using breakpoints, use the following procedure.
1. Load the test program into memory.

2. See Chapter 5 “Loading and Executing Programs” for more information. The
register values are initialized automatically.

3. (Optional) Disassemble the downloaded program to verify a properly-loaded file.

4. Begin single-stepping the test program using the st ep command.

5. You can also set a breakpoint, then execute (for example, using the commands
addr +bp and go) or perform other variations.

The Forth Source-Level Debugger

The Forth source-level Debugger allows single-stepping and tracing of Forth
programs. Each step represents the execution of one Forth word.

The debugger commands are shown in TABLE 6-5.

TABLE 6-5 Forth Source-level Debugger Commands

Command Description

c “Continue”. Switch from stepping to tracing, thus tracing the remainder of the execution of the
word being debugged.

d “Down a level”. Mark for debugging the word whose name was just displayed, then execute it.

u “Up a level”. Un-mark the word being debugged, mark its caller for debugging, and finish
executing the word that was previously being debugged.

f Start a subordinate Forth interpreter with which Forth commands can be executed normally.
When that interpreter is terminated (with r esung), control returns to the debugger at the place
where the f command was executed.

g “Go.” Turn off the debugger and continue execution.

q “Quit”. Abort the execution of the word being debugged and all its callers and return to the
command interpreter.

S “see”. Decompile the word being debugged.

$ Display the address,len on top of the stack as a text string.

h “Help”. Display symbolic debugger documentation.

“Short Help”. Display brief symbolic debugger documentation.

Chapter

99

TABLE 6-5 Forth Source-level Debugger Commands (Continued)

Command Description

debug Mark the specified Forth word for debugging. Enter the Forth Source-level Debugger on all

name subsequent attempts to execute name. After executing debug, the execution speed of the
system may decrease until debugging is turned off with debug- of f . (Do not debug basic
Forth words such as “.”.)

(debug Like debug except that (debug takes an execution token from the stack instead of a name from
the input stream.

debug- of f Turn off the Forth Source-level Debugger so that no word is being debugged.

resune Exit from a subordinate interpreter, and go back to the stepper (See the f command in this
table).

st eppi ng Set “step mode” for the Forth Source-level Debugger, allowing the interactive, step-by-step
execution of the word being debugged. Step mode is the default.

tracing Set “trace mode” for the Forth Source-level Debugger. Tracing enables the execution of the
word being debugged, while showing the name and stack contents for each word called by that
word.

<space- Execute the word just displayed and proceed to the next word.

bar >

Every Forth word is defined as a series of one or more words that could be called
“component” words. While debugging a specified word, the debugger displays
information about the contents of the stack while executing each of the word’s
“component” words. Immediately before executing each component word, the
debugger displays the contents of the stack and the name of the component word
that is about to be executed.

In trace mode, that component word is then executed, and the process continues
with the next component word.

In step mode (the default), the user controls the debugger’s execution behavior.
Before the execution of each component word, the user is prompted for one of the
keystrokes specified in TABLE 6-5.

Using pat ch and (pat ch)

OpenBoot provides the ability to change the definition of a previously compiled
Forth word using high-level Forth language. While the changes will typically be
made in the appropriate source code, the pat ch facility provides a means of quickly
correcting errors uncovered during debugging.

pat ch reads the input stream for the following information:

100 OpenBoot 3.x Command Reference Manual « February 2000

= The name of the new code to be inserted.
= The name of the old code to be replaced.
= The name of the word containing the old code.

For example, consider the following example in which the word t est is replaced
with the number 555:

ok : patch-nme test 0 do i . cr |loop ;
ok patch 555 test patch-ne
ok see patch-ne
pat ch- nme
h# 555 0 do
i . cr
| oop

When using pat ch, some care must be taken to select the right word to replace. This
is especially true if the word you are replacing is used several times within the target
word and the occurrence of the word that you want to replace is not the first
occurrence within the target word. In such a case, some subterfuge is required.

ok : patch-me2 dup dup dup (This third dup should be drop) ;
ok : xx dup ;
ok patch xx dup patch-ne2
ok patch xx dup patch-nme2
ok patch drop dup patch-me2
ok see patch-ne2
pat ch- ne2
XX XX drop

Another use for pat ch is the case where the word to be patched contains some
functionality that needs to be completely discarded. In this case, the word exi t
should be patched over the first word whose functionality is to be eliminated. For
example, consider a word whose definition is:

ok : foo good bad unneeded ;

Chapter 101

102

In this example, the functionality of bad is incorrect and the functionality of
unneeded should be discarded. A first attempt to patch f oo might be:

ok : right this that exit ;
ok patch right bad foo

on the expectation that the use of exi t in the word ri ght would prevent the
execution of unneeded. Unfortunately, exi t terminates the execution of the word
which contains it, in this case ri ght . The correct way to patch f oo is:

ok : right this that ;
ok patch right bad foo
ok patch exit unneeded foo

(pat ch) is similar to pat ch except that (pat ch) obtains its arguments from the
stack. The stack diagram for (pat ch) is:

(newnl numl? ol d-n2 nunmR? xt --)

where:
= new nl and ol d- n2 can be either execution tokens or literal numbers.

= nunl? and nunR? are flags indicating whether new- n1 or ol d- n2, respectively,
are numbers.

= Xt is the execution token of the word to be patched.

For example, consider the following example in which we reverse the affect of our
first pat ch example by replacing the number 555 with t est :

ok see patch-ne
pat ch- nme
h# 555 0 do
i . cr
| oop

ok ['] test false 555 true ['] patch-ne (patch)
ok see patch-ne
pat ch- nme
test 0 do
i . cr
| oop

OpenBoot 3.x Command Reference Manual < February 2000

Usingftrace

The f t race command shows the sequence of Forth words that were being executed
at the time of the last exception. An example of f t r ace follows.

ok : testl 1!
ok : test2 1 testl ;
ok test2
Menory address not aligned
ok ftrace
! Called fromtestl at ffeacchc
testl Called fromtest2 at ffeaccba
(ffe8b574) Called from (interpret at ffe8b6f8
execute Called fromcatch at ffe8a8bha
ffefeffO
0
ffefebdc
catch Called from (fload) at ffe8ced8
0
(fload) Called frominteract at ffe8cf74
execute Called fromcatch at ffe8a8ba
ffefefd4
0
ffefebdc
catch Called from (quit at ffe8cf98

In this example, t est 2 calls t est 1, which tries to store a value to an unaligned
address. This results in the exception: Menory address not al i gned.

The first line of f t r ace’s output shows the last command that caused the exception
to occur. The next lines show locations from which the subsequent commands were
being called.

The last few lines are usually the same in any f t r ace output, because that is the
calling sequence in effect when the Forth interpreter interprets a word from the
input stream.

Chapter 103

104 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX A

Setting Up a TIP Connection

You can use the TTYA or TTYB ports on your SPARC system to connect to a second
Sun workstation. By connecting two systems in this way, you can use a shell
window on the Sun workstation as a terminal to your SPARC system. (See the ti p
man page for detailed information about terminal connection to a remote host.)

The TIP method is preferable to simply connecting to a dumb termina, since it lets
you use windowing and operating system features when working with the boot
PROM. A communications program or another non-Sun computer can be used in the
same way, if the program can match the output baud rate used by the PROM TTY
port.

Note — In the following pages, “SPARC system” refers to your system, and “Sun
workstation” refers to the system you are connecting to your system.

Use the following procedure to set up the TIP connection.

Connect the Sun workstation TTYB serial port to your SPARC system TTYA serial
port using a serial connection cable. Use a 3-wire Null Modem Cable, and connect
wires 3-2, 2-3, and 7-7. (Refer to your system installation manual for specifications
on null modem cables.)

105

106

2. At the Sun workstation, add the following lines to the /et ¢/ r enot e file.

If you are running a pre-Solaris 2.0 version of the operating environment, type:

hardw re:\
:dv=/dev/ttyb: br#9600: el =AC*"S*"Q*U'D: i e=%%: oe="D:

If you are running version 2.x of the Solaris operating environment, type:

hardwi re: \
:dv=/dev/tern b: br #9600: el =2 C"S*"Q'"U'D: i e=%$: oe="D:

. In a Shell Tool window on the Sun workstation, type:

hostnane%tip hardwire
connect ed

The Shell Tool window is now a TIP window directed to the Sun workstation TTYB.

Note — Use a Shell Tool, not a Command Tool; some TIP commands may not work
properly in a Command Tool window.

. At your SPARC system, enter the Forth Monitor so that the ok prompt is

displayed.

Note — If you do not have a video monitor attached to your SPARC system, connect
the SPARC system TTYA to the Sun workstation TTYB and turn on the power to
your SPARC system. Wait for a few seconds, and press Stop-Auto interrupt the
power-on sequence and start the Forth Monitor. Unless the system is completely
inoperable, the Forth Monitor is enabled, and you can continue with the next step in
this procedure.

. If you need to redirect the standard input and output to TTYA, type:

ok ttya io

There will be no echoed response.

OpenBoot 3.x Command Reference Manual < February 2000

6. Press Return on the Sun workstation keyboard. The ok prompt shows in the TIP
window.

Typing ~# in the TIP window is equivalent to pressng Stop-A at the SPARC system.

Note — Do not type Stop-A from a Sun workstation being used as a TIP window to
your SPARC system. Doing so will abort the operating system on the workstation. (If
you accidentally type St op- A, you can recover by immediately typing go at the ok
prompt.)

7. When you are finished using the TIP window, end your TIP session and exit the
window:

8. Redirect the input and output to the screen and keyboard, if needed, by typing:

ok screen output keyboard input

Note — When entering ~ (tilde character) commands in the TIP window,
~ must be the first character entered on the line. To ensure that you are at the start
of a new line, press Return first.

Common Problems With TIP

This section describes solutions for TIP problems occurring in pre-Solaris 2.0
operating environments.

Problems with TIP may occur if:

= The lock directory is missing or incorrect.

There should be a directory named / usr/ spool / uucp. The owner should be uucp
and the mode should be dr wxr - sr - X.

= TTYB is enabled for logins.

The status field for TTYB (or the serial port you are using) must be set to of f in/

etc/ttytab.Besuretoexecutekill -HUP 1 (seeinit(8))asrootifyou have to
change this entry.

= /dev/ttyb is inaccessible.

Appendix 107

108

Sometimes, a program will have changed the protection of / dev/ t t yb (or the serial
port you are using) so that it is no longer accessible. Make sure that / dev/ttyb has
the mode set to crw-rw-rw-,

= The serial line is in tandem mode.

If the TIP connection is in tandem mode, the operating system sometimes sends
XON (”S) characters (particularly when programs in other windows are generating
lots of output). The XON characters are detected by the Forth word key?, and can
cause confusion. The solution is to turn off tandem mode with the ~s !t andemTIP
command.

= The . cshrc file generates text.
TIP opens a sub-shell to run cat , thus causing text to be attached to the beginning of

your loaded file. If you use dl and see any unexpected output, check your . cshrc
file.

OpenBoot 3.x Command Reference Manual < February 2000

APPENDIX B

Building a Bootable Floppy Disk

This appendix outlines the steps necessary to create a bootable floppy disk.
Information about the OS commands can be found in the man pages. Refer to the
specific OS release for information about particular files and their locations within
the file system.

Format the diskette.
The f df or mat command is an example of a utility for formatting floppy disks.

Create the diskette’s file systems.
If available, you can use the newf s command.

Mount the diskette to a temporary partition.
If available, you can use the nount command to do this.

Copy the second-level disk booter to the diskette, using the cp command.
boot and uf sboot are examples of second-level booters.

Install a boot block on the floppy.
If available, you can use the i nst al | boot command.

Copy the file that you want to boot to the mounted diskette, using the cp
command.

Unmount the diskette, using unount , if available.

You can now remove the diskette from the drive.
Use ej ect fl oppy, if it’s available.

109

110 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX C

Troubleshooting Guide

What do you do if your system fails to boot properly? This appendix discusses some
common failures and ways to alleviate them.

Power-on Initialization Sequence

Familiarize yourself with the system power-on initialization messages. You can then
identify problems more accurately because these messages show you the types of
functions the system performs at various stages of system startup. They also show
the transfer of control from POST to OpenBoot to the Booter to the kernel.

The example that follows shows the OpenBoot initialization sequence in a Sun
Ultra™ 1 system. The messages before the banner appear on TTYA only if the di ag-
swi t ch? parameter is true.

Note — The actual OpenBoot initialization sequence is system dependent. The
messages on your system may be different.

111

CODE EXAMPLE c-1 OpenBoot Initialization Sequence

...ttyainitialized (At this point, POST has finished
execution and has transferred control to OpenBoot)
Probi ng Menory Bank #0 16 + 16 : 32 Megabyt es(Probe nmenory)
Probi ng Menory Bank #1 0 + O 0 Megabytes
Probi ng Menory Bank #2 0 + 0 : 0 Megabytes
Probi ng Menory Bank #3 0 + 0 : 0 Megabytes
(If use-nvramrc? is true, the firmware

execut es NVRAMRC commands. The firnmware then checks for Stop-x comands, and
probes the devices. The Keyboard LEDs are then flashed.)
Probi ng UPA Slot at |le, 0 Nothing there(Probe devices)
Probi ng /sbus@f,0 at 0,0 cgsix
Probing /sbus@f,0 at 1,0 Nothing there
Probing /sbus@f,0 at 2,0 Nothing there
Sun Utra 1 UPA/ SBus (U traSPARC 167 MHz), Keyboard Present (Display the
banner)
OpenBoot 3.0, 32 MB nenory installed, Serial #7570016
Et her net address 8:0:20:73:82:60, Host |ID: 80738260.
ok boot disk3
Boot device: /sbus/espdma@, 8400000/ esp@, 8800000/ sd@, O(The firnware is TFTP-
i ng the boot program
sd@,0 File and args: (Control is transferred to the booter after
this message is displayed)
FCode UFS Reader 1.8 01 Feb 1995 17:07:00, | EEE 1275 dient Interface. (Booter
starts executing)
Loadi ng: /pl atform sundu/ uf sboot
cpu0: SUNW Ut raSPARC (upaid O inpl 0x0 ver Ox0 clock 143 MHz)
SunCS Rel ease 5.5 Version qui ck_gate_build:04/13/95 (UNI X(R) System V Rel ease
4.0)

(Control is passed to the kernel after this
message i s di splayed)
Copyright (c) 1983-1995, Sun M crosystens, |Inc.(The kernel starts to execute)
DEBUG enabl ed (More kernel nessasges)

Emergency Procedures

Some OpenBoot systems provide the capability of commanding OpenBoot by means
of depressing a combination of keys on the system’s keyboard (i.e. a “keyboard
chord”).

112 OpenBoot 3.x Command Reference Manual « February 2000

TABLE C-1 describes the keyboard chords provided by SPARC-compatible systems.
When issuing any of these commands, hold down the keys immediately after
turning on the power to the SPARC system, and keep them pressed for a few
seconds until the keyboard LEDs flash.

TABLEC-1 SPARC-Compatible System Keyboard Chords

Command Description

Stop Bypass POST. This command does not depend on security-mode. (Note: some systems bypass
POST as a default; in such cases, use St op- D to start POST.)

Stop-A Abort.

Stop-D Enter diagnostic mode (set di ag- swi t ch? to t r ue).

Stop-F Enter Forth on TTYA instead of probing. Use f exi t to continue with the initialization
sequence. Useful if hardware is broken.

Stop-N Reset NVRAM contents to default values.

Note — These commands are disabled if the PROM security is on. Also, if your
system has f ul | security enabled, you cannot apply any of the suggested
commands unless you have the password to get to the ok prompt.

Preserving Data After a System Crash

The sync command forces any information on its way to the hard disk to be written
out immediately. This is useful if the operating system has crashed, or has been
interrupted without preserving all data first.

sync actually returns control to the operating system, which then performs the data
saving operations. After the disk data has been synchronized, the operating system
begins to save a core image of itself. If you do not need this core dump, you can
interrupt the operation with the St op- A key sequence.

Common Failures

This section describes some common failures and how you can fix them.

Appendix 113

114

Blank Screen —No Output

Problem: Your system screen is blank and does not show any output.

Here are possible causes for this problem:
= Hardware has failed.

Refer to your system documentation.

= Keyboard is not attached.

If the keyboard is not plugged in, the output goes to TTYA instead. To fix this
problem, power down the system, plug in the keyboard, and power on again.

= Monitor is not turned on or is not plugged in.

Check the power cable on the monitor. Make sure the monitor cable is plugged into
the system frame buffer; then turn the monitor on.

= out put-deviceissetto TTYAor TTYB.

This means the NVRAM parameter out put - devi ce issettottyaor ttyb instead
of being set to scr een. Connect a terminal to TTYA and reset the system. After

getting to the ok prompt on the terminal, type: screen out put to send output to
the frame buffer. Use set env to change the default display device, if needed.

= System has multiple frame buffers.
If your system has several plugged-in frame buffers, or it has a built-in frame buffer
and one or more plugged-in frame buffers, then it is possible that the wrong frame

buffer is being used as the console device. See “Setting the Console to a Specific
Monitor” on page 117.

System Boots From the Wrong Device

Problem: Your system is supposed to boot from the disk; instead, it boots from the
net.

There are two possible causes for this:
= The di ag- swi t ch? NVRAM parameter is set to t r ue.

Interrupt the booting process with St op- A. Type the following commands at the ok
prompt:

ok setenv diag-switch? false
ok boot

The system should now start booting from the disk.

OpenBoot 3.x Command Reference Manual < February 2000

= The boot - devi ce NVRAM parameter is set to net instead of di sk.

Interrupt the booting process with St op- A. Type the following commands at the ok
prompt:

ok setenv boot-device disk
ok boot

Note that the preceding commands cause the system to boot from the disk defined
as di sk in the device aliases list. If you want to boot from another service, set boot -
devi ce accordingly.

Problem: Your system is booting from a disk instead of from the net.

= boot - devi ce is not set to net .

Interrupt the booting process with St op- A. Type the following commands at the ok
prompt:

ok setenv boot-device net
ok boot

Problem: Your system is booting from the wrong disk. (For example, you have more
than one disk in your system. You want the system to boot from di sk2, but the
system is booting from di skl instead.)

= boot - devi ce is not set to the correct disk.

Interrupt the booting process with St op- A. Type the following commands at the ok
prompt:

ok setenv boot-device disk2
ok boot

System Will Not Boot From Ethernet

Problem: Your system fails to boot from the net.

The problem could be one of the following:
= NIS maps are out-of-date.

Report the problem to your system administrator.
= Ethernet cable is not plugged in.

Appendix 115

Plug in the ethernet cable. The system should continue with the booting process.
= Server is not responding: no carri er messages.

Report the problem to your system administrator.
= tpe-link-test is disabled.

Refer to the troubleshooting information in your system documentation. (Note:
systems that do not have Twisted Pair Ethernet will not have the t pe- | i nk-t est
parameter.)

System Will Not Boot From Disk

Problem: You are booting from a disk and the system fails with the message: The
file just |oaded does not appear to be executable.

= The boot block is missing or corrupted.
Install a new boot block.

Problem: You are booting from a disk and the system fails with the message: Can’ t
open boot device.

= The disk may be powered down (especially if it is an external disk).

Turn on power to the disk, and make sure the SCSI cable is connected to the disk
and the system.

SCSI Problems

Problem: Your system has more than one disk installed, and you get SCSI-related
errors.

= Your system might have duplicate SCSI target number settings.
Try the following procedure:
1. Unplug all but one of the disks.

2. At the ok prompt, type:

ok probe-scsi

Note the target number and its corresponding unit number.

1. Plug in another disk and perform Step b again.

116 OpenBoot 3.x Command Reference Manual « February 2000

2. If you get an error, change the target number of this disk to be one of the unused

target numbers.

3. Repeat Steps b, ¢, and d until all the disks are plugged back in.

Setting the Console to a Specific Monitor

Problem: You have more than one monitor attached to the system, and the console is

not set to the intended monitor.

= If you have more than one monitor attached to the system, OpenBoot always

assigns the console to the frame buffer specified by the out put - devi ce NVRAM
parameter. The default value of out put - devi ce is scr een, which is an alias for

one of the frame buffers found by the firmware.

A common way to change this default is to change out put - devi ce to the
appropriate frame buffer:

ok nvalias nyscreen /sbus/cgsix
ok setenv output-device nyscreen
ok reset-all

Another way of setting the console to a specific monitor is to change the
sbus- probe-1ist NVRAM parameter.

ok show sbus-probe-list (Display the current and default
val ues)

If the frame buffer that you are choosing as the console is in slot 2, change
sbus- probe-1i st to probe slot 2 first:

ok setenv sbus-probe-list 2013
ok reset-all

If a non-SBus frame buffer is installed, this second method may not work.

Appendix

117

118 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX D

Sun Ultra 5/10 UPA/PCI System

This appendix describes some information that is different in this PCl-bus-based
system than in an Sbus-based Sun system.

PCIl-Based System

The banner output is as follows, indicating that it is a PCl-based system by showing
"UPA/PCI" in banner

ok banner

Sun Utra 5/10 UPA/PCl (U traSPARC-I1i 300MHz), Keyboard Present
OpenBoot 3.11, 32 MB nmenory installed, Serial #8812498.

Et hernet address 8:0:20:86:77:d2, Host I D: 808677d2.

Note that the output of show devs command shows some PCI- based nodes. Also,
PCl-based systems use generic names for devices. On-board network is named
"network", and internal disks are named "di skn", n representing the scsi target
number for that disk.

119

Plug in PCI cards with their own FCodePROM may or may not be using generic
names. For details on generic names, see Recommended Practices available on
homepage for Open Firmware Working Group at:

http://playground. sun. com 1275

ok show- devs

/ SUNW U traSPARC- I i @, 0

[pci @f,0

/virtual - menory

/ menory@, 0

/al i ases

[options

/ openpr om

/ chosen

| packages

/ pci @rf, 0/ pci @

[pci @f, 0/ pci @, 1

[pci @f,O0/pci @, 1l/ide@

/ pci @f, 0/ pci @, 1/ SUNW n64B@

[pci @f, 0/ pci @, 1/ networ k@, 1

[pci @f, 0/ pci @, 1/ ebus@

[pci @f,0/pci @, 1/ide@/ cdrom

[pci @f, 0/ pci @, 1/i de@/ di sk

[pci @f, 0/ pci @, 1/ ebus@/ SUNW CS4231@4, 200000
/ pci @f, 0/ pci @, 1/ ebus@/ fl ashprom@lo, O
/ pci @f, 0/ pci @, 1/ ebus@/ eepr om@d4, 0

/ pci @f, 0/ pci @, 1/ ebus@/ f dt hr ee@4, 3023f0
[pci @f,0/pci @, 1/ ebus@/ ecpp@4, 3043bc
[pci @f, 0/ pci @, 1/ ebus@/ su@4, 3062f 8

[pci @f,0/pci @, 1/ ebus@/ su@4, 3083f 8

[pci @f, 0/ pci @, 1/ ebus@/ se@4, 400000

[pci @f, 0/ pci @, 1/ ebus@/ SUNW pl | @4, 504000
[pci @f, 0/ pci @, 1/ ebus@/ power @4, 724000
[pci @f, 0/ pci @, 1/ ebus@/ auxi o@4, 726000
[openproni cl i ent-services

/ packages/ sun- keyboar d

/ packages/ SUNW bui | tin-drivers

/ packages/ di sk-1 abel

| packages/ obp-tftp

| packages/ debl ocker

/ packages/ t er mi nal - emul at or

120 OpenBoot 3.x Command Reference Manual « February 2000

The following shows the output of the deval i as command on the Sun Ultra 5/10
UPA/PCI system:

ok devali as

screen / pci @f, 0/ pci @, 1/ SUNW n64B@

net / pci @f, 0/ pci @, 1/ networ k@, 1

cdrom / pci @f, 0/ pci @, 1/i de@/ cdrom@, O: f

di sk / pci @f,0/pci @, 1/i de@/ di sk@, 0

di sk3 / pci @f,0/pci @, 1/i de@/ di sk@3, 0

di sk2 / pci @f, 0/ pci @, 1/i de@/ di sk@, 0

di sk1 / pci @f, 0/ pci @, 1/i de@/ di sk@, 0

di sk0 / pci @f, 0/ pci @, 1/i de@/ di sk@, 0

i de / pci @f, 0/ pci @, 1/i de@

f I oppy / pci @f,0/pci @, 1/ ebus@/ f dt hree

ttyb / pci @f, 0/ pci @, 1/ ebus@/ se: b

ttya / pci @f, 0/ pci @, 1/ ebus@/ se: a

keyboar d! / pci @f, 0/ pci @, 1/ ebus@/

su@4, 3083f 8: f or cennde

keyboard / pci @f,0/pci @, 1/ ebus@/ su@4, 3083f 8
nouse / pci @f,0/pci @, 1/ ebus@/ su@4, 3062f 8
nane al i ases

The command . speed shows the speed for the processor and busses attached to the
system:

ok . speed

CPU Speed : 300. 00MHz
UPA Speed : 100. 00MHz
PCI Bus A : 33Mhz

PCl Bus B : 33Mhz

Appendix 121

pci aand pci b PCI Busses

The Sun Ultra 5/10 UPA/PCI system has two PCI busses, pci a & pci b. The
probing of slots for those busses are controlled by the following two NVRAM
configuration variables.

TABLED-1 PCI Slots

Variable Name Default value Description

pci a- probe-1li st 1,234 Controls probe order of plug-in devices
under pcia

pci b- probe-1i st 1,23 Controls probe order of plug-in devices
under pci b

122 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX E

Sun Ultra 30 UPA/PCI System

This appendix describes some information that is different in this PCl-bus-based
system than in an Sbus-based Sun system.

PCIl-Based System

The banner output is as follows, indicating that it is a PCl-based system by showing
"UPA/PCI" in banner

ok banner

Sun Utra 30 UPA/ PCI (U traSPARC 200MHz), Keyboard Present
OpenBoot 3.9, 64 MB nenory installed, Serial #8431666

Et hernet address 8:0:20: 80: a8: 32, Host |ID: 8080a832

Note that the output of show devs command shows some PCI- based nodes. Also,
PCl-based systems use generic names for devices. On-board network is named
"network", and internal disks are named "di skn", representing the scsi target
number for that disk.

123

Plug in PCI cards with their own FCodePROM may or may not be using generic
names. For details on generic names, see Recommended Practices available on
homepage for Open Firmware Working Group at:

http://playground. sun. com 1275

ok show- devs

/ SUNW f f b@le, 0

/ SUNW Ul t r aSPARC@, 0
/counter-tinmer@f, 1c00

/ pci @f, 2000

/ pci @f, 4000

/virtual - nenory

/ menor y @, 60000000

[al i ases

[options

/ openprom

/ chosen

/ packages

/ pci @f, 4000/ usbh@

/ pci @f, 4000/ SUNW n64B@

/ pci @f, 4000/ scsi @

/ pci @f, 4000/ network@, 1

/ pci @f, 4000/ ebus@

[pci @f, 4000/ scsi @/t ape

/ pci @f, 4000/ scsi @/ di sk

/ pci @.f, 4000/ ebus@/ SUNW CS4231@ 4, 200000
/ pci @f, 4000/ ebus@/ f | ashprom@o, O
[pci @f, 4000/ ebus@l/ eeprom@sis, 0

/ pci @f, 4000/ ebus@l/ f dt hree@4, 3023f0
/ pci @f, 4000/ ebus@/ ecpp@4, 3043bc
/ pci @f, 4000/ ebus@/ su@4, 3062f 8

/ pci @f, 4000/ ebus@/ su@4, 3083f 8

/ pci @f, 4000/ ebus@/ se@4, 400000

[pci @f, 4000/ ebus@l/ sc@4, 500000

/ pci @f, 4000/ ebus@/ SUNW pl | @4, 504000
[pci @f, 4000/ ebus@/ power @4, 724000
/ pci @f, 4000/ ebus@l/ auxi o@4, 726000
/ openproni client-services

| packages/ sun- keyboard

| packages/ SUNW bui I tin-drivers

| packages/ di sk- 1 abel

/ packages/ obp-tftp

/ packages/ debl ocker

/ packages/t erm nal - erul at or

124 OpenBoot 3.x Command Reference Manual « February 2000

The following shows the output of the deval i as command on the Sun Ultra
30UPA/PCI system:

ok devali as

screen / SUNW f fb@le, O

net / pci @f, 4000/ network@, 1

di sk / pci @f, 4000/ scsi @/ di sk@, 0
cdrom / pci @f, 4000/ scsi @/ di sk@, O: f

t ape / pci @f, 4000/ scsi @/tape@, 0
tapel / pci @.f, 4000/ scsi @/t ape@, 0

t apeO / pci @f, 4000/ scsi @/t ape@, 0

di sk6 / pci @f, 4000/ scsi @/ di sk@, 0

di sk5 / pci @f, 4000/ scsi @/ di sk@, 0

di sk4 / pci @f, 4000/ scsi @/ di sk@, 0

di sk3 / pci @f, 4000/ scsi @/ di sk@, 0

di sk2 / pci @f, 4000/ scsi @/ di sk@, 0

di skl / pci @f, 4000/ scsi @/ di sk@., 0

di skO / pci @f, 4000/ scsi @/ di sk@, 0

scsi / pci @f, 4000/ scsi @

f | oppy / pci @.f, 4000/ ebus@/ f dt hree

ttyb / pci @f, 4000/ ebus@/ se: b

ttya / pci @f, 4000/ ebus@/ se: a

keyboar d! / pci @f, 4000/ ebus@l/ su@4, 3083f 8: f or cenpde
keyboard / pci @f, 4000/ ebus@/ su@4, 3083f 8
nouse / pci @f, 4000/ ebus@/ su@4, 3062f 8

Appendix 125

When you look at properties for the device node of a PCI device, you will see few
properties that are unique to PCI devices and few properties has a different format
than that of a SBus device. For example, the output of . properti es for a PCI
device is:

ok cd /pci @f, 4000/ scsi @
ok .properties

interrupts 00000020
assi gned- addr esses 81001810 00000000 00000400 00000000
00000100

82001814 00000000 00010000 00000000 00000100
82001818 00000000 00011000 00000000 00001000

devi ce_type scsi-2
cl ock-frequency 02625a00
reg 00001800 00000000 00000000 00000000 00000000

01001810 00000000 00000000 00000000 00000100
02001814 00000000 00000000 00000000 00000100
02001818 00000000 00000000 00000000 00001000

nodel Synbi os, 53C875
conpati bl e gl

nane SCSi

devsel - speed 00000001

cl ass-code 00010000

max- | at ency 00000040

m n- gr ant 00000011
revision-id 00000003
device-id 0000000f
vendor-i d 00001000

Generic Names

The following example shows generic names for devices under / pci @.f, 4000/

scsi @:

ok Is
f00809d8 t ape
f 007ecdc di sk

126 OpenBoot 3.x Command Reference Manual « February 2000

The command . speed shows the speed for the processor and busses attached to the
system:

ok . speed

CPU Speed : 200. 00MHz
UPA Speed : 100. 00MHz
PCI Bus A : 66Mz

PCI Bus B : 33Mhz

pci aand pci b PCI Busses

The Sun Ultra 30 UPA/PCI system has two PCI busses, pci a & pci b. The probing
of slots for those busses are controlled by the following two NVRAM configuration
variables.

TABLEE-1 PCI Slots

Variable Name Default value Description

pci a- probe-1i st 1,2 Controls probe order of plug-in devices
under pcia

pci b- probe-1i st 3,2,4,5 Controls probe order of plug-in devices
under pci b

pci a- probe-1i st corresponds to devices under / pci @f, 2000 and pci b-
probe- i st corresponds to devices under /pci @f, 4000.

pci a supports one plug-in client (slot 1, marked as "PCI 1, 66"). It can support a
device which is 64 bits wide and runs up to 66Mhz. Even though there is no client/
slot under pci a corresponding to value 2, 2 is included in pci a- pr obe- i st
default value for historical reasons.

pci b supports three plug -in clients (slot 2,4, and 5; marked as "PCI 2", "PCI 3", and
"PCI 4" respectively). pci b can support devices which are 64 bits wide and run upto
33Mhz.

Appendix 127

128 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX F

Sun Ultra 60 UPA/PCI System

This appendix describes some information that is different in this PCl-bus-based
system than in an Sbus-based Sun system.

PCIl-Based System

The banner output is as follows, indicating that it is a PCl-based system by showing
"UPA/PCI" in banner

ok banner

Sun Utra 60 UPA/PClI (U traSPARC-I1 296MHz), No Keyboard
OpenBoot 3.11, 256 MB nenory installed, Serial #9241373.
Et hernet address 8:0:20:8d: 3: 1d, Host |ID: 808d031d.

Note that the output of show devs command shows some PCI- based nodes. Also,
PCl-based systems use generic names for devices. On-board network is named
"network", and internal disks are named "di skn", n representing the scsi target
number for that disk.

129

Plug in PCI cards with their own FCodePROM may or may not be using generic
names. For details on generic names, see Recommended Practices available on
homepage for Open Firmware Working Group at:
http://playground. sun. com 1275

ok show- devs

/ SUNW Ul t raSPARC- | | @, 0

/[counter-tinmer@f, 1c00

/ pci @f, 2000

/ pci @f, 4000

/virtual - renory

/ menor y@, a0000000

/aliases

[options

/ openprom

/ chosen

| packages

/ pci @f, 4000/ scsi @, 1

/ pci @f, 4000/ scsi @

/ pci @f, 4000/ net wor k@, 1

/ pci @f, 4000/ ebus@

/ pci @f, 4000/ scsi @, 1/t ape

/ pci @f, 4000/ scsi @, 1/ di sk

[pci @f, 4000/ scsi @/t ape

/ pci @f, 4000/ scsi @/ di sk

/ pci @.f, 4000/ ebus@/ SUNW CS4231@ 4, 200000
/ pci @f, 4000/ ebus@/ f | ashprom@o, O
[pci @f, 4000/ ebus@l/ eeprom@sis, 0

/ pci @f, 4000/ ebus@l/ f dt hree@4, 3023f0
/ pci @f, 4000/ ebus@/ ecpp@4, 3043bc
/ pci @f, 4000/ ebus@/ su@4, 3062f 8

/ pci @f, 4000/ ebus@/ su@4, 3083f 8

/ pci @f, 4000/ ebus@/ se@4, 400000

[pci @f, 4000/ ebus@l/ sc@4, 500000

/ pci @f, 4000/ ebus@/ SUNW pl | @4, 504000
[pci @f, 4000/ ebus@/ power @4, 724000
/ pci @f, 4000/ ebus@l/ auxi o@4, 726000
/ openproni client-services

| packages/ sun- keyboard

| packages/ SUNW bui I tin-drivers

| packages/ di sk- 1 abel

/ packages/ obp-tftp

/ packages/ debl ocker

/ packages/t erm nal - erul at or

130 OpenBoot 3.x Command Reference Manual « February 2000

The following shows the output of the deval i as command on the Sun Ultra
30UPA/PCI system:

ok devali as

screen / SUNW f fb@le, O

net / pci @f, 4000/ network@, 1

di sk / pci @f, 4000/ scsi @/ di sk@, 0
cdrom / pci @f, 4000/ scsi @/ di sk@, O: f

t ape / pci @f, 4000/ scsi @/t ape@, 0

t apel / pci @.f, 4000/ scsi @/t ape@, 0

t ape0 / pci @f, 4000/ scsi @/tape@, 0

di sk6 / pci @f, 4000/ scsi @/ di sk@, 0

di sk5 / pci @f, 4000/ scsi @/ di sk@, 0

di sk4 / pci @f, 4000/ scsi @/ di sk@t, 0

di sk3 / pci @f, 4000/ scsi @/ di sk@, 0

di sk2 / pci @f, 4000/ scsi @/ di sk@, 0

di skl / pci @f, 4000/ scsi @/ di sk@, 0

di sk0 / pci @f, 4000/ scsi @/ di sk@, 0
scsi / pci @f, 4000/ scsi @

f I oppy / pci @f, 4000/ ebus@/ f dt hr ee

ttyb / pci @.f, 4000/ ebus@/ se: b

ttya / pci @f, 4000/ ebus@/ se: a

keyboar d! / pci @f, 4000/ ebus@/ su@4, 3083f 8: f or cenode
keyboard / pci @f, 4000/ ebus@/ su@4, 3083f 8
nmouse / pci @f, 4000/ ebus@/ su@4, 3062f 8
name al i ases

Appendix 131

When you look at properties for the device node of a PCI device, you will see few
properties that are unique to PCI devices and few properties has a different format
than that of a SBus device. For example, the output of . properti es for a PCI
device is:

ok cd /pci @f, 4000/ scsi @

ok .properties

assi gned- addr esses 81001810 00000000 00000400 00000000 00000100
82001814 00000000 00010000 00000000 00000100
82001818 00000000 00011000 00000000 00001000

devi ce_type scsi-2
cl ock-frequency 02625a00
reg 00001800 00000000 00000000 00000000 00000000

01001810 00000000 00000000 00000000 00000100
02001814 00000000 00000000 00000000 00000100
02001818 00000000 00000000 00000000 00001000

nodel Synbi os, 53C875
conpati bl e gl m
name scsi
devsel - speed 00000001
cl ass- code 00010000
interrupts 00000001
max- | at ency 00000040
nm n- gr ant 00000011
revision-id 00000014
device-id 0000000f
vendor-id 00001000

Generic Names

The following example shows generic names for devices under / pci @.f, 4000/

scsi @:

ok Is
f007ae2c tape
f00797f 4 di sk

132 OpenBoot 3.x Command Reference Manual « February 2000

The command . speed shows the speed for the processor and busses attached to the
system:

ok . speed

CPU Speed : 296. 00MHz
UPA Speed : 098. 66MHz
PCI Bus A : 66Mz

PCI Bus B : 33Mhz

pci aand pci b PCI Busses

The Sun Ultra 60 UPA/PCI system has two PCI busses, pci a & pci b. The probing
of slots for those busses are controlled by the following two NVRAM configuration
variables.

TABLE F-1

Variable Name Default value Description

pci a- probe-1i st 1,2 Controls probe order of plug-in devices
under pcia

pci b- probe-1i st 3,2,4,5 Controls probe order of plug-in devices
under pci b

pci a- probe-1i st corresponds to devices under / pci @f, 2000 and pci b-
probe- i st corresponds to devices under /pci @f, 4000.

pci a supports one plug-in client (slot 1, marked as "PCI 1, 66"). It can support a
device which is 64 bits wide and runs up to 66Mhz. Even though there is no client/
slot under pci a corresponding to value 2, 2 is included in pci a- pr obe- i st
default value for historical reasons.

pci b supports three plug -in clients (slot 2,4, and 5; marked as "PCI 2", "PCI 3", and
"PCI 4" respectively). pci b can support devices which are 64 bits wide and run upto
33Mhz.

Appendix 133

134 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX G

Sun Ultra 250 UPA/PCI System

This appendix describes information that is different in this PCI-bus-based system
than that in an Sbus-based Sun system.

Banner Command Output

The output of the banner command appears as follows, indicating that it is a PCI-
based system.

ok banner

Sun (TM Enterprise 250 UPA/ PCI (U traSPARC-I1 296MHz), No
Keyboard

OpenBoot 3.7, 128 MB nmenory installed, Serial #8941639.

Et hernet address 8:0:20:88:70:47, Host |D. 80887047.

Generic Names

Note that the output of the show devs command shows some PCI- based nodes.
PCl-based systems use generic names for devices. That is, the on-board network is
named "network"”, and internal disks are named "diskn", with n representing the scsi
target number for that disk, ("disk” with no number refers to "disk0"). Plug in PCI
cards with their own FCode PROM may or may not be using generic names.

135

For details on generic names, see Recommended Practices available on the homepage
for the Open Firmware Working Group at: htt p: / / pl aygr ound. sun. com

ok show- devs

/ SUNW Ul t raSPARC- | | @, O

/@, 0

/rsc

/ pci @f, 2000

/ pci @f, 4000

/counter-tinmer@lf, 1c00

/ associ ati ons

/virtual - nenory

/ menmory@, 0

/aliases

/ options

/ openprom

/ chosen

/ packages

/ nrc@, 0/ bank@, 60000000

/ mc@, 0/ bank@, 40000000

/ mc@, 0/ bank@), 20000000

/ nmc@, 0/ bank@, 0

/ mc@, 0/ bank@, 0/ di Mm@, 3

/ mc@, 0/ bank@, 0/ di Mm@, 2

/[nc@, 0/ bank@, 0/ di Mm@, 1

/ mc@, 0/ bank@, 0/ di mm@, O/ pci @f, 4000/ scsi @, 1
[pci @f, 4000/ scsi @

/ pci @f, 4000/ network@, 1

/ pci @f, 4000/ ebus@

/ pci @f, 4000/ scsi @3, 1/t ape

/ pci @f, 4000/ scsi @3, 1/ di sk

/ pci @f, 4000/ scsi @/t ape

[pci @.f, 4000/ scsi @/ di sk

/ pci @.f, 4000/ ebus@/ SUNW envctrl t wo@4, 600000
[pci @f, 4000/ ebus@/ fl ashprom@ao, 0
/ pci @f, 4000/ ebus@/ eepr om@4, 0

/ pci @f, 4000/ ebus@/ f dt hr ee@4, 3023f 0
/ pci @.f, 4000/ ebus@l/ ecpp@4, 3043bc
/ pci @f, 4000/ ebus@l/ su@4, 3062f 8

/ pci @f, 4000/ ebus@/ su@4, 3083f 8

/ pci @f, 4000/ ebus@/ se@4, 200000

/ pci @f, 4000/ ebus@/ se@4, 400000

/ pci @f, 4000/ ebus@/ sc@4, 500000

/ pci @f, 4000/ ebus@/ SUNW pl | @4, 504000
/ pci @f, 4000/ ebus@l/ power @4, 724000
/ pci @f, 4000/ ebus@l/ auxi o@4, 726000

OpenBoot 3.x Command Reference Manual < February 2000

/ associ ati ons/ sl ot 2dev

/ associ ati ons/ sl ot 2di sk

[openproniclient-services

| packages/ obdi ag

/ packages/ di sk- 1 abel

| packages/ obp-tftp

| packages/ debl ocker

/ packages/t erm nal - enul at or

SCSI Internal Busses

For Ultra 250 systems, there are two internal SCSI busses. The device "scsi" refers to
the internal SCSI 170 bus for internal disk.

Appendix 137

The following shows the output of a devalias command on a Sun Ultra 250 UPA/PCI

system.
ok devalias
di sk5 / pci @f, 4000/ scsi @/ di sk@, 0
di sk4 / pci @.f, 4000/ scsi @/ di sk@, 0
di sk3 / pci @f, 4000/ scsi @/ di sk@, 0
di sk2 / pci @f, 4000/ scsi @/ di sk@®, 0
di skl / pci @f, 4000/ scsi @/ di sk@, 0
di skO / pci @.f, 4000/ scsi @/ di sk@, 0
di sk / pci @.f, 4000/ scsi @/ di sk@, 0
scsi / pci @f, 4000/ scsi @3
cdrom / pci @f, 4000/ scsi @/ di sk@, O: f
t ape / pci @f, 4000/ scsi @/ tape@, 0
pci a / pci @f, 2000
pcib / pci @f, 4000
pci 0 / pci @f, 4000
flash / pci @f, 4000/ ebus@/ fl ashprom@o, 0
nvram / pci @f, 4000/ ebus@/ eepr om@d4, 0
paral | el / pci @f, 4000/ ebus@/ ecpp@4, 3043bc
net / pci @f, 4000/ network@l, 1
ebus / pci @f, 4000/ ebus@
i 2¢c / pci @f, 4000/ ebus@/ SUNW envctrltwo
f I oppy / pci @f, 4000/ ebus@/ f dt hree
tty / pci @f, 4000/ ebus@/ se@4, 400000
ttya / pci @f, 4000/ ebus@/ se@4, 400000: a
ttyb / pci @.f, 4000/ ebus@l/ se@4, 400000: b
rscctl / pci @f, 4000/ ebus@l/ se@4, 200000: sspct |
rsc / pci @f, 4000/ ebus@/ se@4, 200000: ssp
ttyc / pci @f, 4000/ ebus@/ se@4, 200000: ssp
ttyd / pci @f, 4000/ ebus@/ se@4, 200000: sspct |
keyboar d! / pci @f, 4000/ ebus@/ su@4, 3083f 8: f or cenode
keyboard / pci @.f, 4000/ ebus@/ su@4, 3083f8
nouse / pci @f, 4000/ ebus@/ su@4, 3062f 8
nane al i ases

138 OpenBoot 3.x Command Reference Manual « February 2000

. properti es foraPCI Device

When you look at properties for a device node of a PCI device, you will see a few
properties that are unique to PCI devices and a few properties that have a different
format than that of a SBus device. For example, the output of . properties fora

PCI device:

ok cd /pci @f, 4000/ scsi @
ok .properties

t arget 6- scsi -options 00 00 05 f8

target 5-scsi -options 00 00 05 f8

target 4- scsi - options 00 00 05 f8

t arget 3-scsi -options 00 00 05 f8

t arget 2- scsi -options 00 00 05 f8

target1-scsi-options 00 00 05 f8

| atency-tiner 00000011

assi gned- addr esses 81001810 00000000
82001814 00000000
82001818 00000000

devi ce_type scsi-2

fru not her boar d

cl ock-frequency 02625a00

reg 00001800 00000000

01001810 00000000
02001814 00000000

02001818 00000000
nodel Synbi os, 53C875
conpati bl e 70 63 69 31 30 30
nane SCSi
devsel - speed 00000001
cl ass-code 00010000
interrupts 00000020
max- | at ency 00000040
m n- gr ant 00000011
revision-id 00000014
device-id 0000000f
vendor-id 00001000

00000400
00010000
00011000

00000000
00000000
00000000
00000000

30 2c 66

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00 67 6¢C

00000100
00000100
00001000

00000000
00000100
00000100
00001000

6d 00 70 63

Appendix

139

The following example shows generic names for devices under / pci @f, 4000/
scsi @:

ok Is
f 008bc60 t ape
f007a51c di sk

. speed Command

The command .speed shows the speed for both processors and busses attached to
the system, as follows:

ok . speed

CPU Speed : 296. 00MHz

UPA Speed : 098. 66M1z

PCl Bus A at UPA node 1f: 66Mhz
PCl Bus B at UPA node 1f: 33Mhz

140

Probing of Slots For PCI Busses

The Sun Ultra 250 UPA/PCI system has four PCI plug-in slots, distributed across a
single PCI bus. Probing of slots for those busses is controlled by the following two
NVRAM configuration variables:

TABLEG-1 NVRAM Configuration Variables

Variable Name Default Value Description

pciO-probe-list 3.2,4,5 Controls probe order of plug-in devices
under pcio

pci-slot-skip-list none Controls skipping of PCI plug-in slots

pciO-probe-list specifies the device probe order on the "B" bus of the 1F PCI Controller.
Device 3 is the motherboard 876 UltraSCSI bus (internal disks), while devices 2, 4,
and 5 are open 33MHz 32-bit slots for plug-in cards.

OpenBoot 3.x Command Reference Manual < February 2000

pci - sl ot - ski p-1i st isalist (0 to 3) of PCI slots that should not be probed. The
values "0" to "3" correspond to the backpanel PCI slots, from bottom to top.

The Ultra 250 systems provide 4 PCI plug-in slots, numbered from 0 to 3, bottom-to-
top (accessible and labeled from the back of the system).:

TABLE G-2 PCI Plug-in Slots

PCI Bus PCI
PCI Slot Device Width Speed
3 pci 0 /pci@1f,2000/ xxx@1 32 bit 33 MHz
2 pci 0 /pci@1f,4000/ xxx@2 32 bit 33 MHz
1 pci 0 /pci@1f,4000/ xxx@4 32 bit 33 MHz
0 pci 0 /pci@1f,4000/ xxx@5 32 bit 33MHz

where the xxx will correspond to the particular PCI card plugged into that slot. For
example, plugging an 875/glm SCSI controller card into slot 0 will yield /

pci @f, 4000/ scsi @, while plugging an 876 dual-SCSI card into slot 3 will yield
two separate "devices" / pci @.f, 2000/ scsi @ and / pci @f, 2000/ scsi @, 1.

Probe SCSI Command

The following is a sample output of the pr obe- scsi command showing the two
internal SCSI busses.

ok probe-scsi
This command may hang the systemif a Stop-A or halt conmand
has been executed. Please type reset-all to reset the system
bef ore executing this conmmand.
Do you wish to continue? (y/n) vy
Target 8

Unit O Di sk SEAGATE ST32171W SUN2. 1G8254

Appendix 141

142 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX H

Sun Ultra 450 UPA/PCI System

This appendix describes information that is different in this PCI-bus-based system
than that in an Sbus-based Sun system.

Banner Command Output

The output of the banner command appears as follows, indicating that it is a PCI-
based system.

ok banner

Sun Utra 450 (3 X U traSPARC-I1 248MHz), Keyboard Present
OpenBoot 3.5, 256 MB nenory installed, Serial #8525185
Et hernet address 8:0:20:82:a5:81, Host I D 80821581

Generic Names

Note that the output of the show devs command shows some PCI- based nodes.
PCl-based systems use generic names for devices. That is, the on-board network is
named "network"”, and internal disks are named "diskn", with n representing the scsi
target number for that disk, ("disk” with no number refers to "disk0"). Plug in PCI
cards with their own FCode PROM may or may not be using generic names.

For details on generic names, see Recommended Practices available on the homepage
for the Open Firmware Working Group at:

http://playground. sun. conf 1275

143

ok show- devs

/ pci @, 2000

/ pci @, 4000

/ pci @, 2000

/ pci @, 4000

/ SUNWf f b@ld, O

/SUNW Ul traSPARC- 11 @, 0
/mc@, 0

/ pci @f, 2000

/ pci @f, 4000
/counter-timer@f, 1c00

/ associ ati ons

/virtual - menory

/[menmory@, 0

/aliases

/ options

/ openprom

/ chosen

| packages

/ pci @, 4000/ scsi @, 1

/ pci @, 4000/ scsi @

/ pci @, 4000/ scsi @, 1

/ pci @, 4000/ scsi @

/ pci @, 4000/ scsi @, 1/t ape
/ pci @, 4000/ scsi @, 1/ di sk
/ pci @, 4000/ scsi @/t ape

/ pci @, 4000/ scsi @/ di sk

/ pci @, 4000/ scsi @, 1/t ape
/ pci @, 4000/ scsi @3, 1/ di sk
/ pci @, 4000/ scsi @/t ape

/ pci @, 4000/ scsi @/ di sk

/ mc@, 0/ bank@, c0000000

/ mc@, 0/ bank@, 80000000

/ nrc@, 0/ bank@, 40000000

/ nc@, 0/ bank@, 0

/ mc@, 0/ bank@, 40000000/ di nm@D, 3
/ nmc@, 0/ bank@, 40000000/ di mm@», 2
/ mc@, 0/ bank@, 40000000/ di Mm@, 1
/ mc@, 0/ bank@, 40000000/ di nmm@, 0
/[nc@, 0/ bank@, 0/ di Mm@, 3
/ nc@, 0/ bank@, 0/ di Mm@, 2
/ nmc@, 0/ bank@, 0/ di Mm@, 1
/ nmc@, 0/ bank@, 0/ di nm@, 0

144 OpenBoot 3.x Command Reference Manual « February 2000

/ pci @f, 4000/ scsi @

/ pci @f, 4000/ scsi @

/ pci @f, 4000/ net wor k@, 1

/ pci @f, 4000/ ebus@

/ pci @f, 4000/ scsi @/t ape

[pci @f, 4000/ scsi @/ di sk

/ pci @f, 4000/ scsi @/t ape

/ pci @f, 4000/ scsi @/ di sk

/ pci @.f, 4000/ ebus@/ SUNW CS4231@ 4, 200000
/ pci @f, 4000/ ebus@/ SUNW envct r| @4, 600000
/ pci @f, 4000/ ebus@/ fl ashpr om@no, 0

/ pci @f, 4000/ ebus@l/ eeprom@sis, 0

[pci @f, 4000/ ebus@/ f dt hree@4, 3023f0
/ pci @f, 4000/ ebus@/ ecpp@4, 3043bc

/ pci @f, 4000/ ebus@/ su@4, 3062f 8

/ pci @f, 4000/ ebus@/ su@4, 3083f 8

/ pci @f, 4000/ ebus@l/ se@4, 400000

/ pci @f, 4000/ ebus@l/ sc@4, 500000

/ pci @f, 4000/ ebus@/ SUNW pl | @4, 504000
/ pci @f, 4000/ ebus@/ power @4, 724000

/ pci @f, 4000/ ebus@/ auxi o@4, 726000

/ associ ati ons/ sl ot 2dev

/ associ ati ons/ sl ot 2l ed

/ associ ati ons/ sl ot 2di sk

/ openproni client-services

/ packages/ obdi ag

/ packages/ di sk-1 abel

| packages/ obp-tftp

| packages/ debl ocker

/ packages/ t er mi nal - emul at or

SCSI Internal Busses

For Ultra 450 systems, there are two internal SCSI busses. The device "scsi" refers to

the internal SCSI 1/0 bus for internal disks, while device "scsix" refers to the
removeable-media and external (connector on back panel) internal SCSI bus.

Appendix

145

The following shows the output of a devalias command on a Sun Ultra 450 UPA/PCI

system.
ok devalias
screen / SUNW f f b@ld, 0
di sk / pci @f, 4000/ scsi @/ di sk@, 0
di skO / pci @f, 4000/ scsi @/ di sk@, 0
di skl / pci @f, 4000/ scsi @/ di sk@l, 0
di sk2 / pci @f, 4000/ scsi @/ di sk@, 0
di sk3 / pci @f, 4000/ scsi @/ di sk@s, 0
scsi / pci @.f, 4000/ scsi @3
di skx0 / pci @f, 4000/ scsi @/ di sk@,
di skx1 / pci @f, 4000/ scsi @/ di sk@l, 0
di skx2 / pci @f, 4000/ scsi @/ di sk@, 0
di skx3 / pci @f, 4000/ scsi @/ di sk@, 0
cdrom / pci @.f, 4000/ scsi @/ di sk@, O: f
t ape / pci @f, 4000/ scsi @/tape@, 0
ScCSi X / pci @f, 4000/ scsi @
pci / pci @f, 4000
pci a / pci @f, 2000
pcib / pci @f, 4000
pci 0 / pci @f, 4000
pci 1l / pci @f, 2000
pci 2 / pci @, 4000
pci 3 / pci @, 2000
pci 4 / pci @, 4000
pci 5 / pci @, 2000
flash / pci @f, 4000/ ebus@/ fl ashpromalo, O
nvram / pci @f, 4000/ ebus@/ eepromd4, 0
paral | el / pci @f, 4000/ ebus@/ ecpp@4, 3043bc
net / pci @f, 4000/ networ k@, 1
ebus / pci @f, 4000/ ebus@
i 2¢c / pci @Lf, 4000/ ebus@/ SUNW envctrl
f 1 oppy / pci @f, 4000/ ebus@/ f dt hree
tty / pci @f, 4000/ ebus@/ se
ttyb / pci @f, 4000/ ebus@/ se: b
ttya / pci @f, 4000/ ebus@/ se: a
keyboar d! / pci @f, 4000/ ebus@l/ su@4, 3083f 8: f or cenode
keyboard / pci @.f, 4000/ ebus@/ su@4, 3083f 8
nouse / pci @f, 4000/ ebus@/ su@4, 3062f 8

146 OpenBoot 3.x Command Reference Manual « February 2000

. properti es foraPCI Device

When you look at properties for a device node of a PCI device, you will see a few
properties that are unique to PCI devices and a few properties that have a different
format than that of a SBus device. For example, the output of . properties fora

PCI device

ok .properties
interrupts
assi gned- addr esses

devi ce_type
cl ock-frequency
reg

node
conpati bl e
nane
devsel - speed
cl ass-code
max- | at ency
m n- gr ant
revision-id
device-id
vendor-id

ok cd /pci @f, 4000/ scsi @

00000020

81001810 00000000 00000400 00000000 00000100
82001814 00000000 00010000 00000000 00000100
82001818 00000000 00011000 00000000 00001000

scsi-2

02625a00
00001800 00000000 00000000 00000000 00000000
01001810 00000000 00000000 00000000 00000100
02001814 00000000 00000000 00000000 00000100
02001818 00000000 00000000 00000000 00001000

Synbi os, 53C875

glm

scsi

00000001

00010000

00000040

00000011

00000003

0000000f

00001000

The following example shows generic names for devices under / pci @f, 4000/

scsi @:

ok Is
f00809d8 t ape
f007ecdc di sk

Appendix

147

. speed Command

The command .speed shows the speed for both processors and busses attached to
the system, as follows:

ok . speed
CPU Speed : 248. 00MHz
UPA Speed : 082.66MHz

PCl Bus A at UPA node 1f: 66Mhz
PCl Bus B at UPA node 1f: 33Mhz
PCI Bus A at UPA node 6: 66Nz
PCI Bus B at UPA node 6: 33Mhz
PCI Bus A at UPA node 4: 66Mhz
PCl Bus B at UPA node 4: 33MWhz

148

Probing of Slots For PCI Busses

The Sun Ultra 450 UPA/PCI system has ten PCI plug-in slots, distributed across six
PCI busses, called pci0 to pci5; probing of slots for those busses is controlled by the
following two NVRAM configuration variables:

TABLEH-1 NVRAM Configuration Variables

Variable Name Default Value Description

pcio-probe-list 3.2, 4 Controls probe order of plug-in devices
under pcio

pci-slot-skip-list none Controls skipping of PCI plug-in slots

pciO-probe-list specifies the device probe order on the "B" bus of the 1F PCI Controller.
Device 3 is the motherboard 875 UltraSCSI bus (internal disks), device 2 is the
motherboard 875 for removeable media and backpanel external connections (two
motherboard 875 chips), while device 4 is an open 33MHz 32-bit slot for plug-in
cards.

The remaining 5 PCI busses (pcil to pci5) probe device slots in ascending numerical
order, which order cannot be changed.

pci - sl ot - ski p-1i st isalist (1 to 10) of PCI slots that should not be probed. The
values "1" to "10" correspond to the backpanel PCI slots, from bottom to top.

OpenBoot 3.x Command Reference Manual < February 2000

The Ultra 450 systems provide 10 PCI plug-in slots, numbered from 1 to 10, bottom-
to-top (accessible and labeled from the back of the system). The 10 PCI slots
correspond to the six PCI busses as follows:

TABLE H-2

PCI Slot PCI Bus PCI Device Width Speed
10 pci 0 / pci @f, 4000/ xxx@ 32 Bit 33 MHz
9 pci 2 / pci @, 4000/ xxx@ 32 Bit 33 MHz
8 pci 2 / pci @, 4000/ xxx@3 32 Bit 33 MHz
7 pci 2 / pci @, 4000/ xxx@ 64 Bit 33MHz
6 pci 3 / pci @, 2000/ xxx@L 64 Bit 66MHz
5 pcil / pci @f, 2000/ xxx@L 64Bit 66MHz
4 pci 5 / pci @, 2000/ xxx@L 64 Bit 66MHz
3 pci 4 / pci @, 4000/ xxx@ 64 Bit 33MHz
2 pci 4 / pci @, 4000/ xxx@3 64 Bit 33MHz
1 pci 4 / pci @, 4000/ xxx@ 64 Bit 33MHz

where the xxx will correspond to the particular PCI card plugged into that slot. For
example, plugging an 875/glm SCSI controller card into slot 8 will yi el d/

pci @, 4000/ scsi @,while plugging an 876 dual-SCSI card into slot 5 will yield
two separate "devices" / pci @.f, 2000/ scsi @ and / pci @f, 2000/ scsi @, 1.
Inserting a PCI-to-PCl card (such as used for a PCI bus expansion box, or as used on
some multi-function PCI cards like the Sun Swift PCI card) into slot 4 will yield a
device name / pci @, 2000/ pci @, and will subsequently have further devices
created "underneath” this node, such as / pci @, 2000/ pci @/ SUNW hnre @, 1.

Some of these slots are unavailable if certain graphics options are plugged-in. For
example, installing the second FFB graphics card will occupy the physical space of
PCl slots 10, 9, and 8. Other graphics options may use up the space occupied by PCI
slots 10 to 4.

Appendix 149

Probe SCSI Command

The following is a sample output of the pr obe- scsi command showing the two
internal SCSI busses.

ok probe-scsi
Primary U traSCSl bus:

Target O

Unit O Di sk SEAGATE ST34371W SUN4. 2G8254
Target 1

Unit O Di sk SEAGATE ST34371W SUN4. 2G8254
Target 2

Unit O Di sk SEAGATE ST34371W SUM4. 2G8254
Target 3

Unit O Di sk SEAGATE ST34371W SUN4. 2G8254

Renopveabl e- Medi a/ Ext ernal SCSI bus:

Target 3
Unit O Renovabl e Tape ARCHI VE VI PER 150 21531-004 SUN- 04. 00. 0
Target 4
Unit O Renpvabl e Tape EXABYTE EXB- 8500SMBANXH10458
Target 5
Unit O Renovabl e Tape EXABYTE EXB- 8200 263H
Target 6
Unit O Rermovabl e Read Only devi ce TOSH BA XM 5401 TASUN4AXCD3485

150 OpenBoot 3.x Command Reference Manual « February 2000

APPENDIX I

Forth Word Reference

This appendix contains the Forth commands supported by OpenBoot.

For the most part, the commands are listed in the order in which they were
introduced in the chapters. Some of the tables in this appendix show commands that
are not listed elsewhere in this manual. These additional commands (such as
memory mapping or output display primitives, or machine-specific register
commands) are also part of the set of words in the OpenBoot implementation of
Forth; they are included with relevant groups of commands.

151

Stack Item Notation

TABLE I-1

Stack Item Notation

Notation

Description

???

< > <space>
a- addr

addr

addr |en
byte bxxx
char

cnt len size

dxxx

<eol >

fal se

i handl e

n nl n2 n3
nu nul
<not hi ng>
phandl e
phys
phys.l o phys. hi
pstr

quad gxxx

gaddr

152 OpenBoot 3.x Command Reference Manual « February 2000

Alternate stack results shown with space, e.g. (i nput

resul t

Alternate stack items shown without space, e.g. (i nput

true)

Unknown stack item(s).

addr

addr

len false |

len]O result).

Unknown stack item(s). If used on both sides of a stack comment, means the same

stack items are present on both sides.

Space delimiter. Leading spaces are ignored.

Variable-aligned address.

Memory address (generally a virtual address).
Address and length for memory region
8-bit value (low order byte in a 32-bit word).

7-bit value (low order byte), high bit unspecified.

Count or length.

Double (extended-precision) numbers. 2 stack items, most significant cell on top of

stack.

End-of-line delimiter.

0 (false

Pointer for an instance of a package.
Normal signed values (32-bit).

Signed or unsigned values (32-bit).

flag).

Zero stack items.

Pointer

Physical address (actual hardware address).

Lower/upper cell of physical address

Packed

for a package.

string.

Quadlet (32-bit value).

Quadlet (32-bit) aligned address

TABLEI-1 Stack Item Notation (Continued)

Notation Description

{text} Optional text. Causes default behavior if omitted.

"t ext <del i mp” Input buffer text, parsed when command is executed. Text delimiter is enclosed in <>.

[text <delinp] Text immediately following on the same line as the command, parsed immediately. Text
delimiter is enclosed in <>.

true -1 (true flag).

UXXX Unsigned value, positive values (32-bit).

virt Virtual address (address used by software).

waddr Doublet (16-bit) aligned address

word Wxxx Doublet (16-bit value, low order two bytes in a 32-bit word).

x x1 Arbitrary stack item.

x.lo x.hi Low/high significant bits of a data item

xt Execution token.

XXX? Flag. Name indicates usage (e.g. done? ok? error?).

xyz-str xyz-len Address and length for unpacked string.

Xyz-sys Control-flow stack items, implementation-dependent.
(cC --) Compilation stack diagram.

(--)(E -- Execution stack diagram.

)

(R --) Return stack diagram.

Appendix 153

Commands for Browsing the Device Tree

TABLEI-2 Commands for Browsing the Device Tree

Command Description

. properties Display the names and values of the current node’s properties.

dev device-path Choose the specified device node, making it the current node.

dev node-name Search for a node with the specified name in the subtree below the
current node, and choose the first such node found.

dev .. Choose the device node that is the parent of the current node.

dev / Choose the root machine node.

devi ce-end Leave the device tree.

“ device-path” fi nd-device Choose the specified device node, similar to dev.

I's Display the names of the current node’s children.

pwd Display the device path name that names the current node.

see wordname Decompile the specified word.

show devs [device-path] Display all the devices known to the system directly beneath a given
device in the device hierarchy. show devs used by itself shows the entire
device tree.

wor ds Display the names of the current node’s methods.

“ device-path” sel ect - dev Select the specified device and make it the active node.

Common Options for the boot

154 OpenBoot 3.x Command Reference Manual « February 2000

Command

TABLEI-3 Common Options for the boot Command

Parameter Description

boot [device-specifier] [filename] [options]

[device-specifier] The name (full path name or alias) of the boot device. Typical values include:
cdr om(CD-PROM drive)
di sk (hard disk)
f1 oppy (3-1/2" diskette drive)
net (Ethernet)
t ape (SCSI tape)

[filename] The name of the program to be booted (for example, st and/ di ag). filename is relative to
the root of the selected device and partition (if specified). If filename is not specified, the
boot program uses the value of the boot - fi | e NVRAM parameter (see Chapter 3).

[options] (These options are specific to the operating system, and may differ from system to
system.)

System Information Display Commands

TABLE I-4 System Information Display Commands

Command Description

banner Display power-on banner.

show sbus Display list of installed and probed SBus devices.
. enet - addr Display current Ethernet address.

.idprom Display ID PROM contents, formatted.

.traps Display a list of SPARC trap types.

.version Display version and date of the boot PROM.

. speed Display CPU and bus speeds.

show devs Display all installed and probed devices.

Appendix 155

Viewing or Changing Configuration
Variables

TABLEI-5 Viewing or Changing Configuration Variables
Command Description
printenv Display all current parameters and current default values.

set env parameter value

set - def aul t parameter

set-defaults

(Numbers are usually shown as decimal values.)
pri nt env parameter shows the current value of the named parameter.

Set parameter to the specified decimal or text value.
(Changes are permanent, but usually only take effect after a reset.)

Reset the value of the named parameter to the factory default.

Reset parameter values to the factory defaults.

password Set security-password.
NVRAMRC Editor Commands
TABLEI-6 NVRAMRC Editor Commands

Command Description

nval i as alias device-pat

nvedi t

nvqui t

nvrecover

Store the command "deval i as alias device-path" in NVRAMRC. The alias
persists until the nvunal i as or set - def aul t s commands are executed.

Enter the NVRAMRC editor. If data remains in the temporary buffer from a
previous nvedi t session, resume editing those previous contents. If not, read
the contents of NVRAMRC into the temporary buffer and begin editing it.

Discard the contents of the temporary buffer, without writing it to
NVRAMRC. Prompt for confirmation.

Recover the contents of NVRAMRC if they have been lost as a result of the
execution of set - def aul t s; then enter the editor as with nvedi t .
nvrecover fails if nvedi t is executed between the time that the NVRAMRC
contents were lost and the time that nvr ecover is executed.

156 OpenBoot 3.x Command Reference Manual « February 2000

TABLE I-6

NVRAMRC Editor Commands (Continued)

Command

Description

nvrun

nvstore

nvunal i as alias

Execute the contents of the temporary buffer.

Copy the contents of the temporary buffer to NVRAMRC; discard the

contents of the temporary buffer.

Delete the corresponding alias from NVRAMRC.

Appendix

157

NVRAM Script Editor Keystroke
Commands

TABLE -7 NVRAM Script Editor Keystroke Commands

Keystroke Description

Control-B Moves backward one character.

Escape B Moves backward one word.

Control-F Moves forward one character.

Escape F Moves forward one word.

Control-A Moves backward to beginning of the line.

Control-E Moves forward to end of the line.

Control-N Moves to the next line of the script editing buffer.
Control-P Moves to the previous line of the script editing buffer.

Return (Enter)
Control-O
Control-K

Delete
Backspace
Control-H

Escape H

Control-W

Control-D
Escape D
Control-U
Control-Y
Control-Q

Inserts a newline at the cursor position and advances to the next line.
Inserts a newline at the cursor position and stays on the current line.

Erases from the cursor position to the end of the line, storing the erased characters in a save
buffer. If at the end of a line, joins the next line to the current line (i.e. deletes the newline).

Erases the previous character.
Erases the previous character.
Erases the previous character.

Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Erases the next character.

Erases from the cursor to the end of the word, storing the erased characters in a save buffer.
Erases the entire line, storing the erased characters in a save buffer.

Inserts the contents of the save buffer before the cursor.

Quotes the next character (i.e. allows you to insert control characters).

158 OpenBoot 3.x Command Reference Manual « February 2000

TABLEI-7 NVRAM Script Editor Keystroke Commands (Continued)

Keystroke Description

Control-R Retypes the line.

Control-L Displays the entire contents of the editing buffer.

Control-C Exits the script editor, returning to the OpenBoot command interpreter. The temporary
buffer is preserved, but is not written back to the script. (Use nvst or e afterwards to write
it back.)

Appendix 159

Stack Manipulation Commands

TABLEI-8 Stack Manipulation Commands

Command Stack Diagram Description

cl ear (27?7 --) Empty the stack.

dept h (-u) Return the number of items on the stack.
drop (x--) Remove top item from the stack.

2dr op (x1x2--) Remove 2 items from the stack.

3drop (x1x2x3-) Remove 3 items from the stack.

dup (x--%xX) Duplicate the top stack item.

2dup (X1 x2--x1x2x1x2) Duplicate 2 stack items.

3dup (X1 x2 x3 -- x1 x2 x3 x1 x2 x3) Duplicate 3 stack items.

?dup (x--xx]0) Duplicate the top stack item if it is non-zero.
nip (x1x2--x2) Discard the second stack item.

over (x1x2--x1x2x1) Copy second stack item to top of stack.
2over (X1 %2 x3 x4 -- X1 x2 x3 x4 x1 x2) Copy second 2 stack items.

pi ck (xu...x1x0u--xu...x1x0xu) Copy u-th stack item (1 pi ck = over).
>r (x--)(R:--x) Move a stack item to the return stack.

r> (-x)(R:x-) Move a return stack item to the stack.
r@ (-x)(R:x--x) Copy the top of the return stack to the stack.
roll (xu ... x1x0u--xu-1...x1x0xu) Rotate u stack items (2 rol | =rot).

r ot (X1 x2 x3 -- x2x3x1) Rotate 3 stack items.

-rot (x1 x2 x3 -- x3 x1x2) Inversely rotate 3 stack items.

2r ot (X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) Rotate 3 pairs of stack items.

swap (x1x2--x2x1) Exchange the top 2 stack items.

2swap (X1 x2 x3 x4 -- x3 x4 x1 x2) Exchange 2 pairs of stack items.

tuck (X1 x2--x2x1x2) Copy top stack item below second item.

160 OpenBoot 3.x Command Reference Manual « February 2000

Single-Precision Arithmetic Functions

TABLEI-9 Single-Precision Arithmetic Functions
Command Stack Diagram Description
+ (nulnu2 -- sum) Add nul + nu2.
- (nul nu2 -- diff) Subtract nul - nu2.
* (nul nu2 -- prod) Multiply nul * nu2.
*/ (nul nu2 nu3 -- quot) Calculates nul * nu2 / n3.
/ (nln2--quot) Divide nl1 by n2; remainder is discarded.
1+ (nul--nu2) Add 1.
1- (nul--nu2) Subtract 1.
2+ (nul--nu2) Add 2.
2- (nul--nu2) Subtract 2.
abs (n--u) Absolute value.
bounds (' ncount -- n+count n) Prepare arguments for do or ?do loop.
even (n--n]n+l) Round to nearest even integer >=n.
max (nln2--n1]n2) Return the maximum of nl1 and n2.
mn (nln2--n1]n2) Return the minimum of n1 and n2.
nmod (n1n2--rem) Remainder of n1 / n2.
* [nod (nln2n3--rem quot) Remainder, quotient of n1 * n2 / n3.
/ mod (nln2--rem quot) Remainder, quotient of n1 / n2.
negat e (nl--n2) Change the sign of n1.
u* (ulu2--uprod) Multiply 2 unsigned numbers yielding an unsigned product.
u/ nod (ul u2 -- urem uquot) Divide unsigned number by an unsigned number; yield remainder

and quotient.

Appendix 161

Bit-wise Logical Operators

TABLE I-10 Bit-wise Logical Operators
Command Stack Diagram Description
2% (x1--x2) Multiply by 2.
2/ (x1--x2) Divide by 2.
>>a (xLu--x2) Arithmetic right-shift x1 by u bits.
and (x1x2--x3) Bitwise logical AND.
invert (x1--x2) Invert all bits of x1.
I shift (x1lu--x2) Left-shift x1 by u bits. Zero-fill low bits.
or (x1x2--x3) Bitwise logical OR.
rshift (x1lu--x2) Right-shift x1 by u bits. Zero-fill high bits.
u2/ (x1--x2) Logical right shift 1 bit; zero shifted into high bit.
xor (x1x2--x3) Bitwise exclusive OR.
Double Number Arithmetic Functions
TABLE 11 Double Number Arithmetic Functions
Command Stack Diagram Description
d+ (d1 d2 -- d.sum) Add d1 to d2 yielding double number d.sum.
d- (d1 d2 -- d.diff) Subtract d2 from d1 yielding double number d.diff.
f m nod (d n--rem quot) Divide d by n.
n (nln2--d) Signed multiply with double-number product.
s>d (nl--di1) Convert a number to a double number.
sm rem (dn --rem quot) Divide d by n, symmetric division.
unt (ulu2--ud) Unsigned multiply yielding unsigned double number product.
um nod (ud u -- urem uprod) Divide ud by u.

162 OpenBoot 3.x Command Reference Manual « February 2000

32-Bit Data Type Conversion Functions

TABLE I-12 32-Bit Data Type Conversion Functions

Command Stack Diagram Description
bl join (' b.low b2 b3 b.hi -- quad) Join four bytes to form a quadlet
bwj oi n (b.low b.hi -- word) Join two bytes to form a doublet.
Ibflip (quadl -- quad?) Reverse the bytes within a quadlet
| bsplit (quad -- b.low b2 b3 b.hi) Split a quadlet into four bytes.
Iwflip (quadl -- quad?) Swap the doublets within a quadlet.
I wsplit (quad -- w.low w.hi) Split a quadlet into two doublets.
wbf i p (wordl -- word2) Swap the bytes within a doublet.
wbspl it (word -- b.low b.hi) Split a doublet into two bytes.
wjoin (w.low w.hi -- quad) Join two doublets to form a quadlet.
I
64-Bit Data Type Conversion Functions
TABLE I-13 64-Bit Data Type Conversion Functions
Command Stack Diagram Description
bxj oi n (b.lob.2b.3b.4b5b.6b.7b.hi--0) Join 8 bytes to form an octlet.
I xj oin (quad.lo quad.hi -- 0) Join 2 quadlets to form an octlet.
Wxj oi n (w.low.2 w3 w.hi--0) Join four doublets to form an octlet.
xbflip (octl -- oct2) Reverse the bytes within an octlet.
xbflips (oaddr len --) Reverse the bytes within each octlet in the given
region.The behavior is undefined if len is not a
multiple of / x.
xbsplit (o--b.lob.2b.3b.4b.5b.6b.7b.hi) Split an octlet into 8 bytes.
xIflip (octl -- oct2) Reverse the quadlets within an octlet. The bytes

within each quadlet are not reversed.

Appendix 163

TABLE I-13 64-Bit Data Type Conversion Functions (Continued)

Command Stack Diagram Description

xI flips (oaddr len --) Reverse the quadlets within each octlet in the
given region. The bytes within each quadlet are
not reversed. The behavior is undefined if len is
not a multiple of / x.

x| split (0 -- quad.lo quad.hi) Split on octlet into 2 quadlets.

xwflip (octl -- oct2) Reverse the doublets within an octlet. The bytes
within each doublet are not reversed.

xwf | i ps (oaddr len --) Reverse the doublets within each octlet in the
given region. The bytes within each doublet are
not reversed. The behavior is undefined if len is
not a multiple of / x.

xwspl it (o0 --w.lo w.2 w.3 w.hi) Split an octlet into 4 doublets.

164 OpenBoot 3.x Command Reference Manual « February 2000

Address Arithmetic Functions

TABLE I-14 Address Arithmetic Functions

Command Stack Diagram Description

al i gned (nl--nl] a-addr) Increase nl if necessary to yield a variable aligned address.
/c (-n) The number of address units to a byte: 1.

/c* (nul--nu2) Synonym for chars.

ca+ (addrl index -- addr2) Increment addrl by index times the value of / c.
cal+ (addrl -- addr2) Synonym for char +.

char + (addrl -- addr2) Increment addrl by the value of / c.

cell + (addrl -- addr2) Increment addrl by the value of / n.

chars (nul--nu2) Multiply nul by the value of / c.

cells (nul--nu2) Multiply nul by the value of / n.

/1 (-n) Number of address units to a quadlet; typically 4.
[1* (nul--nu2) Multiply nul by the value of /| .

| a+ (addrl index -- addr2) Increment addrl by index times the value of /| .
lal+ (addrl -- addr2) Increment addrl by the value of /| .

/'n (-n) Number of address units in a cell.

/ n* (nul--nu2) Synonym for cel | s.

na+ (addrl index -- addr2) Increment addrl by index times the value of / n.
nal+ (addrl -- addr2) Synonym for cel | +.

/w (-n) Number of address units to a doublet; typically 2.
[wr (nul--nu2) Multiply nul by the value of / w

wa+ (addrl index -- addr2) Increment addrl by index times the value of / w
wal+ (addrl -- addr2) Increment addrl by the value of / w

Appendix

165

64-Bit Address Arithmetic Functions

TABLE I-15 64-Bit Address Arithmetic Functions
Command Stack Diagram Description
/ x (-n) Number of address units in an octlet, typically 8.
/ x* (nul--nu2) Multiply nul by the value of / x.
xa+ (addrl index -- addr2) Increment addrl by index times the value of / x.
xal+ (addrl -- addr2) Increment addrl by the value of / x.

Memory Access Commands

TABLE I-16 Memory Access Commands

Command Stack Diagram Description

! (x a-addr --) Store a number at a-addr.

+! (nu a-addr --) Add nu to the number stored at a-addr.

@ (a-addr -- x) Fetch a number from a-addr.

2! (x1 x2 a-addr --) Store 2 numbers at a-addr, x2 at lower address.

2@ (a-addr -- x1 x2) Fetch 2 numbers from a-addr, x2 from lower address.

bl ank (addr len --) Set len bytes of memory beginning at addr to the space
character (decimal 32).

c! (byte addr --) Store byte at addr.

c@ (addr -- byte) Fetch a byte from addr.

cpeek (addr -- false | byte true) Attempt to fetch the byte at addr. Return the data and
true if the access was successful. Return f al se if a
read access error occurred.

cpoke (byte addr -- okay?) Attempt to store the byte to addr. Return t r ue if the

access was successful. Return f al se if a write access
error occurred.

166 OpenBoot 3.x Command Reference Manual « February 2000

TABLEI-16 Memory Access Commands (Continued)

Command Stack Diagram Description
conp (addrl addr2 len -- diff?) Compare two byte arrays. diff? is 0 if the arrays are
identical,

diff? is -1 if the first byte that is different is lesser in the
string at addrl, diff? is 1 otherwise.

dunp (addr len --) Display len bytes of memory starting at addr.

erase (addr len --) Set len bytes of memory beginning at addr to O.

fill (addr len byte --) Set len bytes of memory beginning at addr to the value
byte.

I! (quad gaddr --) Store a quadlet g at gaddr.

|l @ (gaddr -- quad) Fetch a quadlet q from gaddr.

I bflips (qaddr len --) Reverse the bytes within each quadlet in the specified
region.

Iwflips (gaddr len --) Swap the doublets within each quadlet in specified
region.

| peek (gaddr -- false | quad true) Attempt to fetch the 32-bit quantity at gaddr. Return

the data and t r ue if the access was successful. Return
f al se if a read access error occurred.

| poke (quad gaddr -- okay?) Attempt to store the 32-bit quantity at gaddr. Return
t r ue if the access was successful. Return f al se ifa a
write access error occurred.

nove ('src-addr dest-addr len --) Copy len bytes from src-addr to dest-addr.

of f (a-addr --) Store f al se at a-addr.

on (a-addr --) Store t r ue at a-addr.

unal i gned-1! (quad addr --) Store a quadlet g, any alignment

unal i gned-1 @ (addr -- quad) Fetch a quadlet g, any alignment.

unal i gned-w (w addr --) Store a doublet w, any alignment.

unal i gned- w@ (addr -- w) Fetch a doublet w, any alignment.

wi (w waddr --) Store a doublet w at waddr.

w@ (waddr -- w) Fetch a doublet w from waddr.

W@ (waddr --n) Fetch doublet w from waddr, sign-extended.

Appendix 167

TABLEI-16 Memory Access Commands (Continued)

Command Stack Diagram Description

wbf | i ps (waddr len --) Swap the bytes within each doublet in the specified
region.

wpeek ('waddr -- false | w true) Attempt to fetch the 16-bit quantity at waddr. Return

the data and t r ue if the access was successful. Return
f al se if a read access error occurred.

wpoke (' w waddr -- okay?) Attempt to store the 16-bit quantity to waddr. Return
t rue if the access was successful. Return f al se if a
write access error occurred.

168 OpenBoot 3.x Command Reference Manual « February 2000

64-Bit Memory Access Functions

TABLE I-17 64-Bit Memory Access Functions

Command Stack Diagram Description

<l @ (gaddr --n) Fetch quadlet from gaddr, sign-extended.

X, (o0--) Compile an octlet, o, into the dictionary (doublet-aligned).

X@ (oaddr --0) Fetch octlet from an octlet aligned address.

x! (o oaddr --) Store octlet to an octlet aligned address.

xbflips (oaddr len --) Reverse the bytes within each octlet in the given region.The behavior
is undefined if len is not a multiple of / x.

xI flips (oaddr len --) Reverse the quadlets within each octlet in the given region. The
bytes within each quadlet are not reversed. The behavior is
undefined if len is not a multiple of / x.

xwf i ps (oaddr len --) Reverse the doublets within each octlet in the given region. The
bytes within each doublet are not reversed. The behavior is
undefined if len is not a multiple of / x.

TABLE I-18 Memory Mapping Commands
Command Stack Diagram Description
al l oc- mem ('size -- virt) Allocate and map size bytes of available memory; return the virtual
address. Unmap with f r ee- nem
free-nmem (virt size --) Free memory allocated by al | oc- nem
map? (virt--) Display memory map information for the virtual address.

Appendix 169

Defining Words

TABLE I-19 Defining Words
Command Stack Diagram Description
new-name (--) Start a new colon definition of the word new-

(E:...--7??) name.

; (--) End a colon definition.

al i as new-name old-name (--) Create new-name with the same behavior as
(E: ... --?2??) old-name.

buf fer: name (size --) Create a named array in temporary storage.
(E: -- a-addr)

constant name (n-) Define a constant (for example, 3 const ant
(E:-n) bar).

2const ant name (nln2--) Define a 2-number constant.
(E:--n1n2)

create name (--) Generic defining word.
(E: -- a-addr)

defer name (--) Define a word for forward references or
(E:...-7??) execution vectors using execution token.

does> (...--...a-addr) Start the run-time clause for defining words.
(E: ... --7?7?)

field name (offset size -- offset+size) Create a named offset pointer.
(E: addr -- addr+offset)

struct (--0) Initialize for fi el d creation.

val ue name

vari abl e name

(n-)
(E:--n)
()

(E: -- a-addr)

Create a changeable, named quantity.

Define a variable.

170 OpenBoot 3.x Command Reference Manual « February 2000

Dictionary Searching Commands

TABLE I-20 Dictionary Searching Commands

Command Stack Diagram Description

' name (--xt) Find the named word in the dictionary.
Returns the execution token. Use outside definitions.

['] name (--xt) Similar to ' but is used either inside or outside
definitions.

.calls (xt--) Display a list of all words that call the word whose
execution token is xt.

$find ('str len -- str len false | xt true) Search for word named by str,len. If found, leave xt and
true on stack. If not found, leave name string and false on
stack.

find (pstr -- pstr false | xtn) Search for word named by pstr. If found, leave xt and true
on stack. If not found, leave name string and false on
stack.
(Recommend using $f i nd to avoid use of packed string.)

see thisword (--) Decompile the named command.

(see) (xt--) Decompile the word indicated by the execution token.

sift (pstr --) Display names of all dictionary entries containing the

sifting ccc (--)

wor ds (--)

string pointed to by pstr.

Display names of all dictionary entries containing the
sequence of characters. ccc contains no spaces.

Display all visible words in the dictionary.

Dictionary Compilation Commands

TABLE I-21 Dictionary Compilation Commands

Command Stack Diagram Description

, (n-) Place a number in the dictionary.

c, (byte --) Place a byte in the dictionary.

w, (word --) Place a 16-bit number in the dictionary.

Appendix 171

TABLE I-21 Dictionary Compilation Commands (Continued)

Command Stack Diagram Description

I, (quad --) Place a 32-bit number in the dictionary.

[(--) Enter interpretation state.

] (--) End interpreting, enter compilation state.

al | ot (n-) Allocate n bytes in the dictionary.

>body (xt -- a-addr) Find the data field address from the execution token.

body> (a-addr -- xt) Find the execution token from the data field address.

conpi l e (--) Compile the next word at run time. (Recommend using
post pone instead.)

[compile] name (--) Compile the next (immediate) word. (Recommend using
post pone instead.)

forget name (--) Remove word from dictionary and all subsequent
words.

here (--addr) Address of top of dictionary.

i medi ate (--) Mark the last definition as immediate.

to name (n-) Install a new action in a def er word or val ue.

literal (n-) Compile a number.

origin (--addr) Return the address of the start of the Forth system.

pat ch new-word old-word (--) Replace old-word with new-word in word-to-patch.

word-to-patch

(pat ch)

post pone name

recursive

state

(new-n old-n xt --)

()
()
(--addr)

Replace old-n with new-n in word indicated
by xt.

Delay the execution of the word name.

Make the name of the colon definition being compiled
visible in the dictionary, and thus allow the name of the
word to be used recursively in its own definition.

Variable that is non-zero in compile state.

172 OpenBoot 3.x Command Reference Manual « February 2000

Assembly Language Programming

TABLE I-22 Assembly Language Programming
Command Stack Diagram Description
code name (-- code-sys) Begin the creation of an assembly language routine called name.
(E:...--7?2?) Commands that follow are interpreted as assembler mnemonics. Note
that if the assembler is not installed, code is still present, except that
machine code must be entered numerically (for example, in hex) with
c; (code-sys --) End the creation of an assembly language routine. Automatically
assemble the Forth interpreter “next” function so that the created
assembly-code word, when executed, returns control to the calling
routine as usual.
| abel name (-- code-sys) Begin the creation of an assembly language routine called name. Words
(E: -- a-addr) created with | abel leave the address of the code on the stack when
executed. The commands that follow are interpreted as assembler
mnemonics. As with code, | abel is present even if the assembler is
not installed.
end- code (code-sys --) End the assembly language patch started with | abel .
TABLE I-23 Basic Number Display
Command Stack Diagram Description
(n--) Display a number in the current base.
.r (nsize --) Display a number in a fixed width field.
.S (--) Display contents of data stack.
showst ack (--) Execute . s automatically before each ok prompt.
noshowstack (--) Turn off automatic display of the stack before each ok prompt.
u. (u--) Display an unsigned number.
u.r (usize --) Display an unsigned number in a fixed width field.

Appendix 173

Changing the Number Base

TABLE I-24 Changing the Number Base

Command Stack Diagram Description

.d (n-) Display n in decimal without changing base.

.h (n-) Display n in hex without changing base.

base (--addr) Variable containing number base.

deci mal (--) Set the number base to 10.

d# number (-n) Interpret number in decimal; base is unchanged.

hex (--) Set the number base to 16.

h# number (--n) Interpret number in hex; base is unchanged.
Numeric Output Word Primitives
TABLE I-25 Numeric Output Word Primitives

Command Stack Diagram Description

(+11--+12) Convert a digit in pictured numeric output.

#> (1--addr +n) End pictured numeric output.

<# (--) Initialize pictured numeric output.

(.) (n-) Convert a number to a string.

(u.) (--addrlen) Convert unsigned to string.

digit (char base -- digit true | char false) Convert a character to a digit.

hol d (char --) Insert the char in the pictured numeric output string.

$nunber (‘addr len -- true | n false) Convert a string to a number.

#s (1--0) Convert the rest of the digits in pictured numeric

output.
sign (n-) Set sign of pictured output.

174 OpenBoot 3.x Command Reference Manual « February 2000

Controlling Text Input

TABLE I-26 Controlling Text Input

Command Stack Diagram Description

(ccec) (--) Begin a comment.

\ rest-of-line (--) Skip the rest of the line.

ascii ccc (--char) Get numerical value of first ASCII character of next word.
accept (addr lenl -- len2) Get a line of edited input from the console input device; store at

addr.lenl is the maximum allowed length. len2 is the actual
length received.

expect (addr len --) Get and display a line of input from the console; store at addr.
(Recommend using accept instead.)

key (--char) Read a character from the console input device.

key? (--flag) True if a key has been typed on the console input device.

par se (char -- str len) Parse text from the input buffer delimited by char.

par se-wor d (--strlen) Skip leading spaces and parse text from the input buffer
delimited by white space.

saf e- par se- (--strlen) Similar to par se- wor d but intended for use in cases where the

wor d null string as input is indicative of an error.

wor d (char -- pstr) Collect a string delimited by char from the input buffer and

place it as a packed string in memory at pstr. (Recommend
using par se instead.)

Displaying Text Output

TABLE I-27 Displaying Text Output

Command Stack Diagram Description

" cec” (--) Compile a string for later display.

(cr (--) Move the output cursor back to the beginning of the current line.
cr (--) Terminate a line on the display and go to the next line.

emt (char --) Display the character.

Appendix 175

TABLE I-27 Displaying Text Output (Continued)

Command Stack Diagram Description

exit? (--flag) Enable the scrolling control prompt: More [<space>, <cr>,q] ?
The return flag is t r ue if the user wants the output to be terminated.

space (--) Display a space character.

spaces (+n--) Display +n spaces.

type (addr +n --) Display n characters.

176 OpenBoot 3.x Command Reference Manual « February 2000

Formatted Output

TABLE I-28 Formatted Output

Command Stack Diagram Description

#l i nes (--rows) Value holding the number of lines on the output device.

#out (-- a-addr) Variable holding the column number on the output device.

TABLE I-29 Manipulating Text Strings

Command Stack Diagram Description

", (addr len --) Compile an array of bytes from addr of
length len, at the top of the dictionary as
a packed string.

" cec" (--addr len) Collect an input stream string, either
interpreted or compiled. Within the
string, " (00, ff..) can be used to
include arbitrary byte values.

. (cco) (--) Display a string immediately.

-trailing (addr +nl -- addr +n2) Remove trailing spaces.

bl (--char) ASCII code for the space character;
decimal 32.

count (pstr -- addr +n) Unpack a packed string.

lcc (char -- lowercase-char) Convert a character to lowercase.

| eft-parse- (‘addr len char -- addrR lenR addrL lenL) Split a string at char (which is discarded).

string

pack (‘addr len pstr -- pstr) Make a packed string from addr len;
place it at pstr.

p" ccc" (-- pstr) Collect a string from the input stream;
store as a packed string.

upc (char -- uppercase-char) Convert a character to uppercase.

Appendix 177

|/0 Redirection Commands

TABLE 1-30 I/0 Redirection Commands

Command Stack Diagram Description

i nput (device --) Select device (keyboar d, or device-specifier) for subsequent input.
io (device --) Select device for subsequent input and output.

out put (device --) Select device (scr een, or device-specifier) for subsequent output.

ASCII Constants

TABLE I-31 ASCII Constants

Command Stack Diagram Description
bel | (--n) ASCII code for the bell character; decimal 7.
bs (--n) ASCII code for the backspace character; decimal 8.

Command Line Editor Keystroke
Commands

TABLEI-32 Command Line Editor Keystroke Commands

Keystroke Description

Control-B Moves backward one character.
Escape B Moves backward one word.
Control-F Moves forward one character.

Escape F Moves forward one word.

Control-A Moves backward to beginning of line.

178 OpenBoot 3.x Command Reference Manual « February 2000

TABLEI-32 Command Line Editor Keystroke Commands (Continued)

Keystroke Description

Control-E Moves forward to end of line.

Delete Erases previous character.

Backspace Erases previous character.

Control-H Erases previous character.

Escape H Erases from beginning of word to just before the cursor, storing erased characters
in a save buffer.

Control-W Erases from beginning of word to just before the cursor, storing erased characters
in a save buffer.

Control-D Erases next character.

Escape D Erases from cursor to end of the word, storing erased characters in a save buffer.

Control-K Erases from cursor to end of line, storing erased characters in a save buffer.

Control-U Erases entire line, storing erased characters in a save buffer.

Control-R Retypes the line.

Control-Q Quotes next character (allows you to insert control characters).

Control-Y Inserts the contents of the save buffer before the cursor.

Control-P Selects and displays the previous line for subsequent editing.

Control-N Selects and displays the next line for subsequent editing.

Control-L Displays the entire contents of the editing buffer.

Appendix 179

Command Completion Keystroke
Commands

TABLE I-33 Command Completion Keystroke Commands

Keystroke Description
Control-Space Complete the name of the current word.
Control-/ Display all possible matches for the current word.

Comparison Commands

TABLE I-34 Comparison Commands

Command Stack Diagram Description

< (n1n2--flag) True if n1 < n2.

<= (nln2--flag) True if n1 <= n2.

<> (nln2--flag) True if nl is not equal to n2.
= (n1n2--flag) True if n1 = n2.

> (n1n2--flag) True if n1 > n2.

>= (nln2--flag) True if n1 >=n2.

0< (n--flag) True if n < 0.

O<= (n--flag) True if n <= 0.

0<> (n--flag) True if n <> 0.

0= (n--flag) True if n = 0 (also inverts any flag).
0> (n--flag) True if n > 0.

0>= (n--flag) True if n >= 0.

bet ween ('n min max -- flag) True if min <= n <= max.

fal se (--0) The value FALSE, which is 0.
true (---1) The value TRUE, which is -1.
u< (ulu2--flag) True if ul < u2, unsigned.

180 OpenBoot 3.x Command Reference Manual « February 2000

TABLE I-34 Comparison Commands (Continued)

Command Stack Diagram Description

u<= (ulu2--flag) True if ul <= u2, unsigned.
u> (ulu2--flag) True if ul > u2, unsigned.
u>= (ulu2--flag) True if ul >= u2, unsigned.
within (n min max -- flag) True if min <= n < max.

Appendix

181

| f-el se-t hen Commands

TABLEI1-35 i f-el se-t hen Commands

Command Stack Diagram Description

if (flag --) Execute the following code when flag is t r ue.
el se (--) Execute the following code when flag is f al se.
t hen (--) Terminate i f ..t hen..el se.

case Statement Commands

TABLE I-36 case Statement Commands

Command Stack Diagram Description

case (selector -- selector) Begin a case..endcase conditional.

endcase (selector | {empty} --) Terminate a case..endcase conditional.

endof (--) Terminate an of ..endof clause within a
case...endcase

of (selector test-value -- selector | {empty}) Begin an of ..endof clause within a case
conditional.

begi n (Conditional) Loop Commands

TABLE I-37 begi n (Conditional) Loop Commands

Command Stack Diagram Description

agai n (--) End a begi n..agai n infinite loop.

begin (--) Begin a begi n.whi | e..r epeat, begi n..until, orbegin..agai n loop.

182 OpenBoot 3.x Command Reference Manual « February 2000

TABLE I-37 begi n (Conditional) Loop Commands (Continued)

Command Stack Diagram Description

r epeat (--) End a begi n..whi | e..r epeat loop.
until (flag --) Continue executing a begi n..unti | loop until flag is true.
whi | e (flag --) Continue executing a begi n..whi | e..c epeat loop while flag is true.

Appendix 183

do (Counted) Loop Commands

TABLE I-38 do (Counted) Loop Commands

Command Stack Diagram Description

+l oop (n-) End a do..+l oop construct; add n to loop index and return to do (if n <0,
index goes from start to end, inclusive).

?do (‘end start --) Begin ?do..l oop to be executed 0 or more times. Index goes from start to
end-1, inclusive. If end = start, loop is not executed.

?l eave (flag --) Exit from a do..l oop if flag is non-zero.

do (end start --) Begin a do..l oop. Index goes from start to end-1, inclusive.
Example: 10 0 do i . loop (printsO0O12...def).

i (-n) Leaves the loop index on the stack.

i (-n) Leaves the loop index for next outer enclosing loop.

| eave (--) Exit from do..l oop.

| oop (--) End of do..l oop.

Program Execution Control Commands

TABLE I-39 Program Execution Control Commands

Command Stack Diagram Description

abort (--) Abort current execution and interpret keyboard commands.
abort " ccc" (abort? --) If abort? is true, abort and display message.

eval (...strlen--?2??) Synonym for eval uat e.

eval uat e (...strlen--?2??) Interpret Forth source text from the specified string.

execute (xt--) Execute the word whose execution token is on the stack.

exit (--) Return from the current word. (Cannot be used in counted loops.)
qui t (--) Same as abor t, but leave stack intact.

184 OpenBoot 3.x Command Reference Manual « February 2000

File Loading Commands

TABLE I-40 File Loading Commands
Command Stack Diagram Description
?go (--) Execute Forth, FCode, or binary programs.
boot [specifiers] -h (--) Load file from specified source.

byt e- | oad (addr span --) Interpret loaded FCode binary file. span is usually 1.

dl (--) Load a Forth file over a serial line with t i p and interpret.
Type:
~C cat filename
N-D

dl bin (--) Load a binary file over a serial line with ti p.
Type: ~C cat filename

dl oad filename (addr --) Load the specified file over Ethernet at the given address.

eval (addrlen --) Interpret loaded Forth text file.

go (--) Begin executing a previously-loaded binary program, or
resume executing an interrupted program.

init-program (--) Initialize to execute a binary file.

| oad device-specifier (--) Load data from specified device into memory at the address

argument given by | oad- base.

| oad- base (--addr) Address at which | oad places the data it reads from a
device.

|

TABLE I-41 Disassembler Commands

Command Stack Diagram Description

+di s Continue disassembling where the last disassembly left off.

dis (addr --) Begin disassembling at the specified address.

Appendix 185

Breakpoint Commands

TABLE I-42 Breakpoint Commands

Stack

Command Diagram Description

+bp (addr --) Add a breakpoint at the given address.

-bp (addr --) Remove the breakpoint at the given address.

--bp (--) Remove the most-recently-set breakpoint.

. bp (--) Display all currently set breakpoints.

. breakpoi nt (--) Perform a specified action when a breakpoint occurs. This word can be
altered to perform any desired action. For example, to display registers at
every breakpoint, type:['] .registers is .breakpoint. The
default behavior is . i nst ruct i on. To perform multiple behaviors,
create a single definition which calls all desired behaviors, then load that
word into . br eakpoi nt .

.instruction (--) Display the address, opcode for the last-encountered breakpoint.

.step (--) Perform a specified action when a single step occurs. (See
. breakpoi nt).

bpof f (--) Remove all breakpoints.

finish-1oop (--) Execute until the end of this loop.

go (--) Continue from a breakpoint. This can be used to go to an arbitrary
address by setting up the processor’s program counter before issuing go.

gos (n-) Execute go n times.

hop (--) (Like the st ep command.) Treat a subroutine call as a single instruction.

hops (n-) Execute hop n times.

return (--) Execute until the end of this subroutine.

returnl (--) Execute until the end of this leaf subroutine.

skip (--) Skip (do not execute) the current instruction.

step (--) Single-step one instruction.

st eps (n-) Execute st ep n times.

till (addr --) Execute until the given address is encountered. Equivalent to +bp go.

186 OpenBoot 3.x Command Reference Manual « February 2000

Forth Source-level Debugger Commands

TABLE I-43 Forth Source-level Debugger Commands

Command Description

c “Continue”. Switch from stepping to tracing, thus tracing the remainder of the
execution of the word being debugged.

d “Down a level”. Mark for debugging the word whose name was just displayed, then
execute it.

u “Up a level”. Un-mark the word being debugged, mark its caller for debugging, and

finish executing the word that was previously being debugged.

f Start a subordinate Forth interpreter. When that interpreter exits (with r esune),
control returns to the debugger at the place where the f command was executed.

g “Go.” Turn off the debugger and continue execution.

“Quit”. Abort the execution of the word being debugged and all its callers and return
to the command interpreter.

S “see”. Decompile the word being debugged.
$ Display the address,len on top of the stack as a text string.
h “Help”. Display symbolic debugger documentation.

? “Short Help”. Display brief symbolic debugger documentation.

debug name Mark the specified Forth word for debugging. Enter the Forth Source-level Debugger
on all subsequent attempts to execute name. After executing debug, the execution
speed of the system may decrease until debugging is turned off with debug- of f . (Do
not debug basic Forth words such as “ dup” .)

(debug Like debug except that (debug takes an execution token from the stack instead of a
name from the input stream.

debug- of f Turn off the Forth Source-level Debugger so that no word is being debugged.

resune Exit from a subordinate interpreter, and go back to the stepper (See the f command in
this table.)

st eppi ng Set step mode for the Forth Source-level Debugger, allowing the interactive, step-by-
step execution of the word being debugged. Step mode is the default.

tracing Set trace mode for the Forth Source-level Debugger. Tracing enables the execution of
the word being debugged, while showing the name and stack contents for each word
called by that word.

<space- bar > Execute the word just displayed and proceed to the next word.

Appendix 187

Time Utilities

TABLE I-44 Time Utilities
Command Stack Diagram Description
get - nsecs (--ms) Return the approximate current time in milliseconds.
s (n-) Delay for n milliseconds. Resolution is 1 millisecond.
Miscellaneous Operations
TABLE I-45 Miscellaneous Operations
Command Stack Diagram Description

cal | back string (value --)

catch (... xt--??? error-code | ??? false)

Call Solaris with the given value and string.

Execute xt; return t hr owerror code or 0 if
t hr owis not called.

ej ect-fl oppy (--) Eject the diskette from the floppy drive.

firnmwvare-version (--n) Return major/minor CPU firmware version
(that is, 0x00030001 = firmware version 3.1).

forth (--) Restore main Forth vocabulary to top of
search order.

ftrace (--) Show calling sequence when exception
occurred.

noop (--) Do nothing.

reset-all (--) Reset the entire system (similar to a power-
cycle).

sync (--) Call the operating system to write any
pending information to the hard disk. Also
boot after sync-ing file systems.

t hr ow (‘error-code --) Return given error code to cat ch.

188 OpenBoot 3.x Command Reference Manual « February 2000

Multiprocessor Commands

TABLE I-46 Multiprocessor Commands

Command Stack Diagram Description

switch-cpu (cpu# --) Switch to indicated CPU.

Memory Mapping Commands

TABLE I-47 Memory Mapping Commands

Command Stack Diagram Description

map? (virt--) Display memory map information for the virtual address.

menmap (phys space size -- virt) Map a region of physical addresses; return the allocated
virtual address. Unmap with free-virtual .

obi o (-- space) Specify the device address space for mapping.

obnmem (-- space) Specify the onboard memory address space for mapping.

sbus (-- space) Specify the SBus address space for mapping.

Memory Mapping Primitives

TABLE I-48 Memory Mapping Primitives

Command Stack Diagram Description

i omap? (virt--) Display IOMMU page map entry for the virtual address.

i omap- page (phys space virt --) Map physical page given by phys and space to the virtual
address.

i omap- pages (phys space virt size --) Perform consecutive i omap- pages to map a region of

memory given by size.

i opgmap@ (virt--pte] 0) Return IOMMU page map entry for the virtual address.

Appendix 189

TABLE I-48 Memory Mapping Primitives (Continued)

Command Stack Diagram Description

i opgnmap! (pte virt --) Store a new page map entry for the virtual address.

map- page (phys space virt --) Map one page of memory starting at address phys on to
virtual address virt in the specified address space. All
addresses are truncated to lie on a page boundary.

map- pages (phys space virt size --) Perform consecutive map- pages to map a region of
memory to the specified size.

map-regi on (region# virt --) Map a region.

map- segment s

pgmap!
pgmap?

pgmep@
pagesi ze

r map!
rmap@
segnment si ze
smap!

smap?

smp@

(smentry virt len --)

(pmentry virt --)

(virt--)

(virt -- pmentry)
(--size)
(rmentry virt --)
(virt -- rmentry)
(--size)
(smentry virt --)

(virt--)

(virt -- smentry)

Perform consecutive smap! operations to map a region of
memory.

Store a new page map entry for the virtual address.

Display the page map entry (decoded and in English)
corresponding to the virtual address.

Return the page map entry for the virtual address.
Return the size of a page.

Store a new region map entry for the virtual address.
Return the region map entry for the virtual address.
Return the size of a segment.

Store a new segment map entry for the virtual address.

Formatted display of the segment map entry for the virtual
address.

Return the segment map entry for the virtual address.

190 OpenBoot 3.x Command Reference Manual « February 2000

Cache Manipulation Commands

TABLE I-49 Cache Manipulation Commands

Command Stack Diagram Description

cl ear-cache (--) Invalidate all cache entries.

cache- of f (--) Disable the cache.

cache-on (--) Enable the cache.

ecdat a! (data offset --) Store the data at the cache offset.

ecdat a@ (offset -- data) Fetch (return) data from the cache offset.

ect ag! (value offset --) Store the tag value at the cache offset.
ectag@ (offset -- value) Return the tag value at the cache offset.

fl ush-cache (--) Write back any pending data from the cache.

Reading/Writing Machine Registers in

Sun-4u Machines

TABLE I-50 Reading/Writing Machine Registers in Sun-4u Machines

Command Stack Diagram
aux! (data --) Write auxiliary register.
aux@ (-- data) Read auxiliary register.

Alternate Address Space Access

Appendix

191

Commands

TABLE I-51 Alternate Address Space Access Commands

Command Stack Diagram Description

spacec! (byte addr asi --) Store the byte in asi at addr.

spacec? (addr asi --) Display the byte in asi at addr.

spacec@ (addr asi -- byte) Fetch the byte from asi at addr.

spaced! (quadl quad2 addr asi --) Store the two quadlets in asi at addr. Order is implementation-
dependent.

spaced? (addr asi --) Display the two quadlets in asi at addr. Order is

implementation-dependent.

spaced@ (addr asi -- quadl quad?2) Fetch the two quadlets from asi at addr. Order is
implementation-dependent.

spacel ! (quad addr asi --) Store the quadlet in asi at addr.
spacel ? (addr asi --) Display the quadlet in asi at addr.
spacel @ (addr asi -- quad) Fetch the quadlet from asi at addr.
spacew! (w addr asi --) Store the doublet in asi at addr.
spacew? (addr asi --) Display the doublet in asi at addr.
spacew@ (addr asi -- w) Fetch the doublet from asi at addr.
spacex! (x addr asi --) Store the number in asi at addr.
spacex? (addr asi --) Display the word in asi at addr.
spacex@ (addr asi -- x) Fetch the word from asi at addr.

SPARC Register Commands

TABLE I-52 SPARC Register Commands

Command Stack Diagram Description

%90 through %g7 (-- value) Return the value in the specified global register.
% 0 through % 7 (--value) Return the value in the specified input register.
% 0 through % 7 (-- value) Return the value in the specified local register.
%00 through %7 (-- value) Return the value in the specified output register.

192 OpenBoot 3.x Command Reference Manual « February 2000

TABLE I-52

SPARC Register Commands (Continued)

Command

Stack Diagram

Description

%c %pc %W

% 0 through % 31

.fregisters
.locals
.registers
. Wi ndow
ctrace
set-pc

to regname

-- value)
-- value)
-)
-)
-)
(windowt# --)
()

(new-value --)

(
(
(
(
(

(new-value --)

(windowt# --)

Return the value in the specified register.

Return the value in the specified floating point register.
Display the values in 9% O through 9% 31.

Display the values in the i, | and o registers.

Display values in processor registers.

Same as w. | ocal s; display the desired window.
Display the return stack showing C subroutines.

Set %pc to new-value, and set %mpc to (new-value+4).

Change the value stored in any of the above registers.
Use in the form: new-value t o regname.

Set the current window for displaying % x, % X, or %®x.

Appendix

193

SPARC V9 Register Commands

TABLE I-53 SPARC V9 Register Commands

ICommand IStack Diagram Description

%6 prs (-- value) Return the value in the specified register.
asi

Upst at e

%1 -c

i |

% state

% t

% ba

Yewp
Ycansave
Qcanrestore
Yot herwi n
Pwst at e

%l eanwi n

. pstate Formatted display of the processor state register.

. ver Formatted display of the version register.

. ccr Formatted display of the ccr register.

(--)
(--)
(--)
(--)

.trap-registers Display trap-related registers.

Emergency Keyboard Commands

TABLE I-54 Emergency Keyboard Commands

Command Description

St op Bypass POST. This command does not depend on security-mode. (Note: some systems bypass
POST as a default; in such cases, use St op- D to start POST.)

St op- A Abort.

194 OpenBoot 3.x Command Reference Manual « February 2000

TABLE I-54 Emergency Keyboard Commands

Command Description
St op-D Enter diagnostic mode (set di ag- swi t ch? to t r ue).
St op-F Enter Forth on TTYA instead of probing. Use f exi t to continue with the initialization sequence.

Useful if hardware is broken.

St op-N Reset NVRAM contents to default values.

Appendix 195

196 OpenBoot 3.x Command Reference Manual « February 2000

Index

SYMBOLS
, 100

1, 57

" 71

", 71

(, 51,69
), 69

+, 45

,, 66

., 46

., 67

S, 70,71
(71

., 50,51, 61
5 50, 61
<=, 76
<> 76
= 76

> 76,77
>= 76
@, 57,62
[63

', 63

NUMERICS
0<=, 76

0<>, 76

0=, 76,77

0>, 76

0>=, 76
2constant, 61
2drop, 48
2dup, 49
2over, 49
2rot, 49
2swap, 49
3drop, 49
3dup, 49

A

abort, 83

abort", 83

accept, 69

again, 80

alias, 61

aligned, 55

alloc-mem, 60

allot, 66

arithmetic functions
address arithmetic, 55
address arithmetic, 64-bit, 56
data type conversion, 64-bit, 54
double number, 53
single-precision, 52

ascii, 69

auto-boot?, 14, 25, 28, 35

197

B chars, 55

banner, 32,37 clear, 48

base, 68 colon definitions, 50

begin, 80 command, 25

begin loops, 79 command line editor, ?? to 75

optional command completion commands, 75

between, 76 ional hi d
binary executable programs, 89, 91 opthna istory commands, 75
required commands, 74
bl, 71 .
- command security mode, 30
bljoin, 54 .
comments in Forth code, 69
>body, 66
comp, 57
body, 66 .
comparison commands, 76
boot, 37, 85, 86 to 87 .
compile, 66
boot-command, 13, 14, 25 66

boot-device, 13,14, 18, 25 compiling data into the dictionary, 66

boot-file, 14, 18, 25 64-bit, 67

bounds, 52 configuration variables
+bp, 98,99 displaying, 27

bp, 98 Shus

-bp, 98 sbus-probe-list, 26
--bp, 98 setting, 27, 28

bpoff, 98 standard

auto-boot?, 14, 25, 35
boot-command, 13, 14, 25
boot-device, 13, 14, 18, 25

.breakpoint, 98
breakpoint commands, 97, 98

go, 97 boot-file, 14, 18, 25
buffer:, 61 diag-device, 18
bwijoin, 54 diag-device, 14, 25, 35
bxjoin, 54 di ag- devi ce, 18
byte-load, 85 diag-file, 14, 25, 35

diag-switch?, 13, 18, 25, 35
fcode-debug?, 25
input-device, 25, 33

C nvramrc, 25
/c, 55 oem-banner, 25, 32
/c*, 55 oem-banner?, 26, 32
c, 66 oem-logo, 32

oem-logo?, 26, 32

z:; 525 output-device, 26, 34

! screen-#columns, 26, 34
call opcode, 95 screen-#rows, 26, 34
.calls, 63 security-#badlogins, 26, 29
case, 79 security-mode, 26, 29
cell+, 55 security-password, 26, 29
cells, 55 use-nvramrc?, 26
changing the number base, 68 configuration variables oem-logo, 26
char+, 55 constant, 61

198 OpenBoot 3.x Command Reference Manual February 2000

count, 71

cpeek, 57

cpoke, 57

(cr, 70

cr, 70

$create, 61

create, 61

creating
custom banner, 32
dictionary entries, 61
new commands, 50
new logo, 33

ctrace, 96

D
.d, 44,68
d-, 53
d#, 68
d+, 53
(debug, 100
debug, 100
debugger commands
(debug, 100
$, 99
?, 99
c, 99
d, 99
debug, 100
debug-off, 100
f, 99
g, 99
h, 99
g, 99
resume, 100
s, 99
space-bar, 100
stepping, 100
tracing, 100
u, 99
debug-off, 100
decimal, 43, 68
defer, 61, 63
defining words, 61
depth, 48

dev, 6

devalias, 6

device
aliases, 5
node characteristics, 3
path names, 3

tree display/traversal, 6

device-end, 6
device-specifier, 16
diag-device, 14, 18, 25, 35
diag-file, 14, 25, 35
diag-file, 18
diagnostic

boot from device, 35

boot from file, 35

routines, 18

switch setting, 35
diagnostic-mode?, 18

diag-switch?, 13,18, 25, 35
dictionary of commands, 61

+dis, 95
dis, 95

disassembler commands, 95
displaying current variable settings, 28

displaying registers, 95
dl, 85

dlbin, 85

dload, 85

?do, 81

do, 81

do loops, 81
does>, 61

drop, 48

dump, 42,57,59
?2dup, 49

dup, 49

E
else, 77

emergency keyboard chords, 29

emit, 70
endcase, 79
endof, 79

199

erase, 57
/etc/remote, 106
Ethernet
displaying the address, 22
eval, 83, 86
evaluate, 86
execute, 83
exit, 83
exit?, 70
expect, 69
extended diagnostics, running, 36

F
false, 76
FCode interpreter, 2
FCode programs, 91
fcode-debug?, 25
field, 62
file, 106
file loading commands, 85
fill, 57
$find, 63
find, 63
find-device, 6
finish-loop, 98
flags, 76
fm/mod, 53
Forth
command format, 41
monitor, 2
programs, 87,91
Source-level Debugger, 99
Forth monitor, 2
frame buffer, 72
free-mem, 60
fregisters, 96
ftrace, 103
full security mode, 31

G
?go, 86

go, 37,86, 97, 98, 99
gos, 98

H

.h, 68

h#, 68

help, 9

here, 66

hex, 43, 68

history mechanism, 74
hop, 98

hops, 98

i, 81

.idprom, 22

if, 77

immediate, 66
init-program, 86
input, 72
input-device, 25, 33, 72
install-console, 37
.instruction, 98
invert, 53

io, 72,73

j, 81

K

key, 69

key?, 69, 108
keyboard chords, 29

L
/1, 55

200 OpenBoot 3.x Command Reference Manual * February 2000

/1%, 55

<l@, 59

l,, 66

1@, 57

la+, 55

lal+, 55

Ibflip, 54

Ibflips, 58

lbsplit, 54

lcc, 71

?leave, 81

leave, 81
left-parse-string, 71
literal, 66

load, 86
loading/executing files

FCode/Binary over serial port A, 89
Forth text over a serial port, 87

over Ethernet, 90
with boot, 86, 87
with load, 88

Jlocals, 96

+loop, 81

loop, 81

loops
conditional, 79
counted, 81

Ipeek, 58

Ipoke, 58

Is, 7

Iwflips, 58

lwsplit, 54

Ixjoin, 54

M

m*, 53

manipulating text strings, 71

max, 52

memory
accessing, 56, 57
accessing,64-bit, 59

min, 52

*/mod, 52

/mod, 52
mod, 52
move, 58

N

/n, 55

/n*, 55

na+, 55

nal+, 55

negate, 52

nip, 49
noshowstack, 45, 67
not, 53

notation

stack comments, 47

%npc, 97

null modem cable, 105

number display, 67
$nvalias, 38
nvalias, 38

nvedit, 37, 38, 40

keyboard command summary, 38

nvquit, 38
NVRAM, 25
NVRAMRC
nvramrc, 25
nvrecover, 38
nvrun, 38
nvstore, 38
$nvunalias, 38
nvunalias, 38

O

oem-banner, 25, 32
oem-banner?, 26, 32
oem-logo, 26, 32
oem-logo?, 26, 32
of, 79

off, 58

on, 58

origin, 66

201

output, 72
output-device, 26, 34,72
over, 49

P
pack, 71

parentheses, 69

parse, 69

parse-word, 69
password, 37

(patch), 66

patch, 66

%pc, 97

physical address, 56
pick, 49

plug-in device driver, 1
postpone, 66

power cycle, 41,72

power-on
banner, 22

printenv, 28

probe-all, 37

probe-scsi, 10, 19

program counter, 97

program execution control commands, 83
prompt, 51,78

.properties, 6,7

pwd, 7

quit, 83

R

.r, 67

>r, 49

r>, 49

r@, 49

reading/writing registers
SPARC machines, 96

recurse, 67

recursive, 67

redirecting input/output, 72

.registers, 96

repeat, 80

reset-all, 23,37

resetting
configuration variables to defaults, 29
the system, 23

resume, 100
return, 98
returnl, 98
roll, 49
-rot, 49

rot, 49
rshift, 53

S
.S, 67
s>d, 53
sbus-probe-list, 26
screen-#columns, 26, 34
screen-#rows, 26, 34
script, 36
commands that may not be used, 37
editor commands, 38
SCSI devices
determining, 19
searching the dictionary, 63
secondary boot program, 15

security
command, 30
full, 31

security-#badlogins, 26, 29
security-mode, 26, 29, 30
security-password, 26, 29
(see), 64,93

see, 7, 64,93 to 94

serial ports, 72
set-default, 27, 29
set-defaults, 27,29
setenv, 28

202 OpenBoot 3.x Command Reference Manual ¢ February 2000

setenv security-mode, 37, 38
set-pc, 96, 97
setting
default input/output devices, 34
firmware security, 29
serial port characteristics, 34
show-devs, 7
show-sbus, 22
showstack, 45, 67
$sift, 64
sifting, 64
skip, 98
sm/rem, 53
space, 70
space-bar, 100
spaces, 70
SPARC registers
%f0 - %f31, 96
%i0 - %i7, 96
%npc, 96, 97
%00 - %07, 96
%pc, 96, 97
stack
description, 44
diagram, 46
manipulation commands, 48
stack comments
notation, 47
standard
oem-logo, 26
state, 67
.step, 98
step, 98
stepping, 100
steps, 98
Stop-A, 73
strings, manipulating, 71
struct, 62
suppress-banner, 37
symbol table, 95

T

terminal, 72

test, 19
testing
clock, 21
diskette drive, 20
memory, 20
network connection, 19, 21
text input commands, 68, 69
text output commands, 70
then, 77
till, 98
TIP problems, 107
TIP window, 105, 106
to, 66, 96
tracing, 100
-trailing, 71
.traps, 23
true, 76
ttya, 72
ttyb, 72
type, 70

U

u., 67

u.r, 67

u/mod, 52

u<=, 76

u>, 77

u>=, 77

u2/, 53

um*, 53

um/mod, 53

until, 80

upc, 71

use-nvramrc?, 26

User Interface
command line editor, 74 to 75

optional command completion commands, 75

optional history commands, 75
required commands, 74

203

Vv

value, 61, 62
variable, 62
variables, 33
.version, 23
virtual address, 56

W

/w, 55

/w*, 55
<w@, 58

w, 96

w,, 66

w@, 57

wa+, 55
wal+, 55
watch-clock, 21
watch-net, 22
whbflip, 54
whbflips, 58
whbsplit, 54
while, 80
.window, 96
within, 77
wljoin, 54
word, 69
words, 7,42, 64
wpeek, 58
wpoke, 58
wxjoin, 54

X

/X, 56
/x*, 56
x!, 59

X,, 67
X@, 57,59
xa+, 56
xal+, 56
xbflip, 54

xbflips, 59
xIflip, 54
xIflips, 59
xlsplit, 54
xor, 53
xwflip, 54
xwflips, 59
xwsplit, 54

204 OpenBoot 3.x Command Reference Manual * February 2000

	Contents
	Preface
	Overview
	Features of OpenBoot
	Plug-in Device Drivers
	FCode Interpreter
	Device Tree
	Programmable User Interface

	The User Interface
	The Device Tree
	Device Path Names, Addresses, and Arguments
	Device Aliases
	Displaying the Device Tree

	Getting Help
	A Caution About Using Some OpenBoot Commands

	Booting and Testing Your System
	Booting Your System
	Booting for the Casual User
	Booting for the Expert User

	Running Diagnostics
	Testing the SCSI Bus
	Testing Installed Devices
	Testing the Diskette Drive
	Testing Memory
	Testing the Clock
	Testing the Network Controller
	Monitoring the Network

	Displaying System Information
	Resetting the System

	Setting Configuration Variables
	Displaying and Changing Variable Settings
	Setting Security Variables
	Command Security
	Full Security

	Changing the Power-on Banner
	Input and Output Control
	Selecting Input and Output Device Options
	Serial Port Characteristics

	Selecting Boot Options
	Controlling Power-on Self-Test (POST)
	Using nvramrc
	Editing the Contents of the Script
	Activating the Script

	Using Forth Tools
	Forth Commands
	Data Types
	Using Numbers
	The Stack
	Displaying Stack Contents
	The Stack Diagram
	Manipulating the Stack

	Creating Custom Definitions
	Using Arithmetic Functions
	Single-Precision Integer Arithmetic
	Double Number Arithmetic
	Data Type Conversion
	Address Arithmetic

	Accessing Memory
	Virtual Memory
	Device Registers

	Using Defining Words
	Searching the Dictionary
	Compiling Data Into the Dictionary
	Displaying Numbers
	Changing the Number Base
	Controlling Text Input and Output
	Redirecting Input and Output
	Command Line Editor
	Conditional Flags
	Control Commands
	The if-else-then Structure
	The case Statement
	The begin Loop
	The do Loop
	Additional Control Commands

	Loading and Executing Programs
	Using boot
	Using dl to Load Forth Text Files Over Serial Port A
	Using load
	Using dlbin to Load FCode or Binary Executables Over Serial Port A
	Using dload to Load From Ethernet
	Forth Programs
	FCode Programs
	Binary Executables

	Using ?go

	Debugging
	Using the Forth Language Decompiler
	Using the Disassembler
	Displaying Registers
	SPARC Registers

	Breakpoints
	The Forth Source-Level Debugger
	Using patch and (patch)
	Using ftrace

	Setting Up a TIP Connection
	Common Problems With TIP

	Building a Bootable Floppy Disk
	Troubleshooting Guide
	Power-on Initialization Sequence
	Emergency Procedures
	Preserving Data After a System Crash
	Common Failures
	Blank Screen —No Output
	System Boots From the Wrong Device
	System Will Not Boot From Ethernet
	System Will Not Boot From Disk
	SCSI Problems
	Setting the Console to a Specific Monitor

	Sun Ultra 5/10 UPA/PCI System
	PCI-Based System
	pcia and pcib PCI Busses

	Sun Ultra 30 UPA/PCI System
	PCI-Based System
	Generic Names
	pcia and pcib PCI Busses

	Sun Ultra 60 UPA/PCI System
	PCI-Based System
	Generic Names
	pcia and pcib PCI Busses

	Sun Ultra 250 UPA/PCI System
	Banner Command Output
	Generic Names
	SCSI Internal Busses
	.properties for a PCI Device
	.speed Command
	Probing of Slots For PCI Busses
	Probe SCSI Command

	Sun Ultra 450 UPA/PCI System
	Banner Command Output
	Generic Names
	SCSI Internal Busses
	.properties for a PCI Device
	.speed Command
	Probing of Slots For PCI Busses
	Probe SCSI Command

	Forth Word Reference
	Stack Item Notation
	Commands for Browsing the Device Tree
	Common Options for the boot Command
	System Information Display Commands
	Viewing or Changing Configuration Variables
	NVRAMRC Editor Commands
	NVRAM Script Editor Keystroke Commands
	Stack Manipulation Commands
	Single-Precision Arithmetic Functions
	Bit-wise Logical Operators
	Double Number Arithmetic Functions
	32-Bit Data Type Conversion Functions
	64-Bit Data Type Conversion Functions
	Address Arithmetic Functions
	64-Bit Address Arithmetic Functions
	Memory Access Commands
	64-Bit Memory Access Functions
	Memory Mapping Commands
	Defining Words
	Dictionary Searching Commands
	Dictionary Compilation Commands
	Assembly Language Programming
	Basic Number Display
	Changing the Number Base
	Numeric Output Word Primitives
	Controlling Text Input
	Displaying Text Output
	Formatted Output
	Manipulating Text Strings
	I/O Redirection Commands
	ASCII Constants
	Command Line Editor Keystroke Commands
	Command Completion Keystroke Commands
	Comparison Commands
	if-else-then Commands
	case Statement Commands
	begin (Conditional) Loop Commands
	do (Counted) Loop Commands
	Program Execution Control Commands
	File Loading Commands
	Disassembler Commands
	Breakpoint Commands
	Forth Source-level Debugger Commands
	Time Utilities
	Miscellaneous Operations
	Multiprocessor Commands
	Memory Mapping Commands
	Memory Mapping Primitives
	Cache Manipulation Commands
	Reading/Writing Machine Registers in Sun-4u Machines
	Alternate Address Space Access Commands
	SPARC Register Commands
	SPARC V9 Register Commands
	Emergency Keyboard Commands

	Index

